TY - JOUR
T1 - Kinematic analysis of the Pakuashan fault tip fold, west central Taiwan
T2 - Shortening rate and age of folding inception
AU - Simoes, Martine
AU - Avouac, Jean Philippe
AU - Chen, Yue Gau
AU - Singhvi, Ashok K.
AU - Wang, Chien Ying
AU - Jaiswal, Manoj
AU - Chan, Yu Chang
AU - Bernard, Sylvain
PY - 2007/3/4
Y1 - 2007/3/4
N2 - The Pakuashan anticline is an active fault tip fold that constitutes the frontal most zone of deformation along the western piedmont of the Taiwan Range. Assessing seismic hazards associated with this fold and its contribution to crustal shortening across central Taiwan requires some understanding of the fold structure and growth rate. To address this, we surveyed the geometry of several deformed strata and geomorphic surfaces, which recorded different cumulative amounts of shortening. These units were dated to ages ranging from ∼19 ka to ∼340 ka using optically stimulated luminescence (OSL). We collected shallow seismic profiles and used previously published seismic profiles to constrain the deep structure of the fold. These data show that the anticline has formed as a result of pure shear with subsequent limb rotation. The cumulative shortening along the direction of tectonic transport is estimated to be 1010 ± 160 m. An analytical fold model derived from a sandbox experiment is used to model growth strata. This yields a shortening rate of 16.3 ± 4.1 mm/yr and constrains the time of initiation of deformation to 62.2 ± 9.6 ka. In addition, the kinematic model of Pakuashan is used to assess how uplift, sedimentation, and erosion have sculpted the present-day fold topography and morphology. The fold model, applied here for the first time on a natural example, appears promising in determining the kinematics of fault tip folds in similar contexts and therefore in assessing seismic hazards associated with blind thrust faults.
AB - The Pakuashan anticline is an active fault tip fold that constitutes the frontal most zone of deformation along the western piedmont of the Taiwan Range. Assessing seismic hazards associated with this fold and its contribution to crustal shortening across central Taiwan requires some understanding of the fold structure and growth rate. To address this, we surveyed the geometry of several deformed strata and geomorphic surfaces, which recorded different cumulative amounts of shortening. These units were dated to ages ranging from ∼19 ka to ∼340 ka using optically stimulated luminescence (OSL). We collected shallow seismic profiles and used previously published seismic profiles to constrain the deep structure of the fold. These data show that the anticline has formed as a result of pure shear with subsequent limb rotation. The cumulative shortening along the direction of tectonic transport is estimated to be 1010 ± 160 m. An analytical fold model derived from a sandbox experiment is used to model growth strata. This yields a shortening rate of 16.3 ± 4.1 mm/yr and constrains the time of initiation of deformation to 62.2 ± 9.6 ka. In addition, the kinematic model of Pakuashan is used to assess how uplift, sedimentation, and erosion have sculpted the present-day fold topography and morphology. The fold model, applied here for the first time on a natural example, appears promising in determining the kinematics of fault tip folds in similar contexts and therefore in assessing seismic hazards associated with blind thrust faults.
UR - http://www.scopus.com/inward/record.url?scp=34548556318&partnerID=8YFLogxK
U2 - 10.1029/2005JB004198
DO - 10.1029/2005JB004198
M3 - Article
AN - SCOPUS:34548556318
SN - 2169-9313
VL - 112
JO - Journal of Geophysical Research: Solid Earth
JF - Journal of Geophysical Research: Solid Earth
IS - 3
M1 - B03S14
ER -