Insulinotropic activity of the host-defense peptide frenatin 2D: conformational, structure-function and mechanistic studies

Vishal Musale, L Guilhaudis, Yasser Abdel-Wahab, PR Flatt, JM Conlon

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Of four naturally occurring frenatin peptides tested, frenatin 2D (DLLGTLGNLPLPFI.NH2) from Discoglossus sardus was the most potent and effective in producing concentration-dependent stimulation of insulin release from BRIN-BD11 rat clonal β-cells without displaying cytotoxicity. The peptide also stimulated insulin release from 1.1B4 human-derived clonal β-cells and isolated mouse islets and improved glucose tolerance concomitant with increased circulating insulin concentrations in mice following intraperitoneal administration. The insulinotropic activity of frenatin 2D was not associated with membrane depolarization or an increase in intracellular [Ca2+] but incubation of the peptide (1μM) with BRIN-BD11 cells produced a modest, but significant (P < 0.05), increase in cAMP production. Stimulation of insulin release was abolished in protein kinase A-downregulated cells but maintained in protein kinase C-downregulated cells. Circular dichroism studies showed that, in the presence of dodecylphosphocholine micelles, frenatin 2D exhibited a helical content of 35% and a turn content of 28%. Substitution of the Thr5, Asn8, Pro10, and Ile14 residues in frenatin-2D by Trp and interchange of Pro12 and Phe13 led to loss of insulinotropic activity but the [D1W] and [G7W] analogues were as potent and effective as the native peptide. Frenatin 2D (1μM) also stimulated proliferation of BRIN-BD11 cells and provided significant protection of the cells against cytokine-induced apoptosis. It is concluded that the insulinotropic activity of frenatin 2D is mediated predominantly, if not exclusively, by the KATP channel-independent pathway.
LanguageEnglish
Pages12-21
Number of pages9
JournalBiochimie
Volume156
Early online date19 Sep 2018
DOIs
Publication statusE-pub ahead of print - 19 Sep 2018

Fingerprint

Peptides
Insulin
Down-Regulation
KATP Channels
Cytoprotection
Micelles
Circular Dichroism
Cyclic AMP-Dependent Protein Kinases
Protein Kinase C
Apoptosis
Cytokines
Glucose
Membranes

Keywords

  • frenatin
  • Insulin release
  • host defence peptides
  • structure/function

Cite this

@article{cf48e51722674bdfb5020b51f1504e47,
title = "Insulinotropic activity of the host-defense peptide frenatin 2D: conformational, structure-function and mechanistic studies",
abstract = "Of four naturally occurring frenatin peptides tested, frenatin 2D (DLLGTLGNLPLPFI.NH2) from Discoglossus sardus was the most potent and effective in producing concentration-dependent stimulation of insulin release from BRIN-BD11 rat clonal β-cells without displaying cytotoxicity. The peptide also stimulated insulin release from 1.1B4 human-derived clonal β-cells and isolated mouse islets and improved glucose tolerance concomitant with increased circulating insulin concentrations in mice following intraperitoneal administration. The insulinotropic activity of frenatin 2D was not associated with membrane depolarization or an increase in intracellular [Ca2+] but incubation of the peptide (1μM) with BRIN-BD11 cells produced a modest, but significant (P < 0.05), increase in cAMP production. Stimulation of insulin release was abolished in protein kinase A-downregulated cells but maintained in protein kinase C-downregulated cells. Circular dichroism studies showed that, in the presence of dodecylphosphocholine micelles, frenatin 2D exhibited a helical content of 35{\%} and a turn content of 28{\%}. Substitution of the Thr5, Asn8, Pro10, and Ile14 residues in frenatin-2D by Trp and interchange of Pro12 and Phe13 led to loss of insulinotropic activity but the [D1W] and [G7W] analogues were as potent and effective as the native peptide. Frenatin 2D (1μM) also stimulated proliferation of BRIN-BD11 cells and provided significant protection of the cells against cytokine-induced apoptosis. It is concluded that the insulinotropic activity of frenatin 2D is mediated predominantly, if not exclusively, by the KATP channel-independent pathway.",
keywords = "frenatin, Insulin release, host defence peptides, structure/function",
author = "Vishal Musale and L Guilhaudis and Yasser Abdel-Wahab and PR Flatt and JM Conlon",
year = "2018",
month = "9",
day = "19",
doi = "10.1016/j.biochi.2018.09.008",
language = "English",
volume = "156",
pages = "12--21",

}

Insulinotropic activity of the host-defense peptide frenatin 2D: conformational, structure-function and mechanistic studies. / Musale, Vishal; Guilhaudis, L; Abdel-Wahab, Yasser; Flatt, PR; Conlon, JM.

Vol. 156, 19.09.2018, p. 12-21.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Insulinotropic activity of the host-defense peptide frenatin 2D: conformational, structure-function and mechanistic studies

AU - Musale, Vishal

AU - Guilhaudis, L

AU - Abdel-Wahab, Yasser

AU - Flatt, PR

AU - Conlon, JM

PY - 2018/9/19

Y1 - 2018/9/19

N2 - Of four naturally occurring frenatin peptides tested, frenatin 2D (DLLGTLGNLPLPFI.NH2) from Discoglossus sardus was the most potent and effective in producing concentration-dependent stimulation of insulin release from BRIN-BD11 rat clonal β-cells without displaying cytotoxicity. The peptide also stimulated insulin release from 1.1B4 human-derived clonal β-cells and isolated mouse islets and improved glucose tolerance concomitant with increased circulating insulin concentrations in mice following intraperitoneal administration. The insulinotropic activity of frenatin 2D was not associated with membrane depolarization or an increase in intracellular [Ca2+] but incubation of the peptide (1μM) with BRIN-BD11 cells produced a modest, but significant (P < 0.05), increase in cAMP production. Stimulation of insulin release was abolished in protein kinase A-downregulated cells but maintained in protein kinase C-downregulated cells. Circular dichroism studies showed that, in the presence of dodecylphosphocholine micelles, frenatin 2D exhibited a helical content of 35% and a turn content of 28%. Substitution of the Thr5, Asn8, Pro10, and Ile14 residues in frenatin-2D by Trp and interchange of Pro12 and Phe13 led to loss of insulinotropic activity but the [D1W] and [G7W] analogues were as potent and effective as the native peptide. Frenatin 2D (1μM) also stimulated proliferation of BRIN-BD11 cells and provided significant protection of the cells against cytokine-induced apoptosis. It is concluded that the insulinotropic activity of frenatin 2D is mediated predominantly, if not exclusively, by the KATP channel-independent pathway.

AB - Of four naturally occurring frenatin peptides tested, frenatin 2D (DLLGTLGNLPLPFI.NH2) from Discoglossus sardus was the most potent and effective in producing concentration-dependent stimulation of insulin release from BRIN-BD11 rat clonal β-cells without displaying cytotoxicity. The peptide also stimulated insulin release from 1.1B4 human-derived clonal β-cells and isolated mouse islets and improved glucose tolerance concomitant with increased circulating insulin concentrations in mice following intraperitoneal administration. The insulinotropic activity of frenatin 2D was not associated with membrane depolarization or an increase in intracellular [Ca2+] but incubation of the peptide (1μM) with BRIN-BD11 cells produced a modest, but significant (P < 0.05), increase in cAMP production. Stimulation of insulin release was abolished in protein kinase A-downregulated cells but maintained in protein kinase C-downregulated cells. Circular dichroism studies showed that, in the presence of dodecylphosphocholine micelles, frenatin 2D exhibited a helical content of 35% and a turn content of 28%. Substitution of the Thr5, Asn8, Pro10, and Ile14 residues in frenatin-2D by Trp and interchange of Pro12 and Phe13 led to loss of insulinotropic activity but the [D1W] and [G7W] analogues were as potent and effective as the native peptide. Frenatin 2D (1μM) also stimulated proliferation of BRIN-BD11 cells and provided significant protection of the cells against cytokine-induced apoptosis. It is concluded that the insulinotropic activity of frenatin 2D is mediated predominantly, if not exclusively, by the KATP channel-independent pathway.

KW - frenatin

KW - Insulin release

KW - host defence peptides

KW - structure/function

U2 - 10.1016/j.biochi.2018.09.008

DO - 10.1016/j.biochi.2018.09.008

M3 - Article

VL - 156

SP - 12

EP - 21

ER -