Insulin Secretory Actions of Ethanol Extract of Eucalyptus citriodora Leaf, including Plasma DPP-IV and GLP-1 Levels in High-Fat-Fed Rats, as Well as Characterization of Biologically Effective Phytoconstituents

Prawej Ansari, ST Choudhury, Yasser Abdel-Wahab

Research output: Contribution to journalArticlepeer-review

Abstract

Due to the numerous adverse effects of synthetic drugs, researchers are currently studying traditional medicinal plants to find alternatives for diabetes treatment. is known to be used as a remedy for various illnesses, including diabetes. This study aimed to explore the effects of ethanol extract of (EEEC) on in vitro and in vivo systems, including the mechanism/s of action. The methodology used involved the measurement of insulin secretion from clonal pancreatic β-cells, BRIN BD11, and mouse islets. Other in vitro systems further examined EEEC's glucose-lowering properties. Obese rats fed a high-fat-fed diet (HFF) were selected for in vivo evaluation, and phytoconstituents were detected via RP-HPLC followed by LC-MS. EEEC induced insulin secretion in a concentration-dependent manner with modulatory effects, similar to 1 µM glucagon-like peptide 1 (GLP-1), which were partly declined in the presence of Ca channel blocker (Verapamil), K -channel opener (Diazoxide), and Ca chelation. The insulin secretory effects of EEEC were augmented by isobutyl methylxanthine (IBMX), which persisted in the context of tolbutamide or a depolarizing concentration of KCl. EEEC enhanced insulin action in 3T3-L1 cells and reduced glucose absorption, and protein glycation in vitro. In HFF rats, it improved glucose tolerance and plasma insulin, attenuated plasma DPP-IV, and induced active GLP-1 (7-36) levels in circulation. Rhodomyrtosone B, Quercetin-3-O-β-D-glucopyranoside, rhodomyrtosone E, and quercitroside were identified as possible phytoconstituents that may be responsible for EEEC effects. Thus, these findings revealed that could be used as an adjunct nutritional supplement to manage type 2 diabetes.
Original languageEnglish
Article number757
Pages (from-to)757
JournalMetabolites
Volume12
Issue number8
Early online date17 Aug 2022
DOIs
Publication statusPublished - 17 Aug 2022

Keywords

  • insulin
  • medicinal plants
  • diabetes
  • glucose
  • phytoconstituents

Fingerprint

Dive into the research topics of 'Insulin Secretory Actions of Ethanol Extract of Eucalyptus citriodora Leaf, including Plasma DPP-IV and GLP-1 Levels in High-Fat-Fed Rats, as Well as Characterization of Biologically Effective Phytoconstituents'. Together they form a unique fingerprint.

Cite this