Abstract
Collective movement may emerge if coordinating one’s movement with others produces a greater benefit to oneself than can be achieved alone. Experimentally, the capacity to manoeuvre simulated groups in the wild could enable powerful tests of the impact of collective movement on individual decisions. Yet such experiments are currently lacking due to the inherent difficulty of controlling whole collectives. Here we used a novel technique of experimentally simulating the movement of collectives of social hermit crabs (Coenobita compressus) in the wild. Using large architectural arrays of shells dragged across the beach, we generated synchronous collective movement and systematically varied the simulated collective’s travel direction as well as the context (i.e., danger level). With drone video from above, we then tested whether focal individuals were biased in their movement by the collective. We found that, despite considerable engagement with the collective, individuals’ direction was not significantly biased. Instead, individuals expressed substantial variability across all stimulus directions and contexts. Notably, individuals typically achieved shorter displacements in the presence of the collective versus in the presence of the control stimulus, suggesting an impact of traffic. The absence of a directional bias in individual movement due to the collective suggests that social hermit crabs are individualists, which move with a high level of opportunistic independence, likely thanks to the personal architecture and armour they carry in the form of a protective shell. Future studies can manipulate this level of armour to test its role in autonomy of movement, including the consequences of shell architecture for social decisions. Our novel experimental approach can be used to ask many further questions about how and why collective and individual movement interact.
Original language | English |
---|---|
Article number | 7508 (2022) |
Journal | Scientific Reports |
Volume | 12 |
Early online date | 7 May 2022 |
DOIs | |
Publication status | Published online - 7 May 2022 |
Data Access Statement
All data available as Electronic Supplementary MaterialKeywords
- Ecology
- Evolution