Increasing Topic Coherence by Aggregating Topic Models

Stuart Blair, Yaxin Bi, Maurice Mulvenna

Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review

4 Citations (Scopus)


In this paper, we introduce a novel method for aggregating multiple topic models to produce an aggregate model that contains top- ics with greater coherence than individual models. When generating a topic model a number of parameters must be specified. Depending on the parameters chosen the resulting topics can be very general or very specific. In this paper the process of aggregating multiple topic mod- els generated using different parameters is investigated; the hypothesis being that combining the general and specific topics can increase topic coherence. The aggregate model is created using cosine similarity and Jensen-Shannon divergence to combine topics which are above a sim- ilarity threshold. The model is evaluated using evaluation methods to calculate the coherence of topics in the base models against those of the aggregated model. The results presented in this paper show that the aggregated model outperforms standard topic models at a statistically significant level in terms of topic coherence when evaluated against an external corpus.
Original languageEnglish
Title of host publicationProceedings of the 9th International Conference on Knowledge Science, Engineering and Management (KSEM-2016)
EditorsF Lehner, N Fteimi
Place of PublicationHeidelberg
ISBN (Print)978-3-319-47650-6
Publication statusPublished online - 5 Oct 2016


  • Topic models
  • Semantic coherence
  • Ensemble methods


Dive into the research topics of 'Increasing Topic Coherence by Aggregating Topic Models'. Together they form a unique fingerprint.

Cite this