Incorporating Duration Information in Activity Recognition.

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Citations (Scopus)


Activity recognition has become a key issue in smart home environments. The problem involves learning high level activities from low level sensor data. Activity recognition can depend on several variables; one such variable is duration of engagement with sensorised items or duration of intervals between sensor activations that can provide useful information about personal behaviour. In this paper a probabilistic learning algorithm is proposed that incorporates episode, time and duration information to determine inhabitant identity and the activity being undertaken from low level sensor data. Our results verify that incorporating duration information consistently improves the accuracy.
Original languageEnglish
Title of host publicationUnknown Host Publication
Number of pages16
Publication statusPublished (in print/issue) - 1 Sept 2010
EventKSEM 2010 - Belfast, UK
Duration: 1 Sept 2010 → …


ConferenceKSEM 2010
Period1/09/10 → …


Dive into the research topics of 'Incorporating Duration Information in Activity Recognition.'. Together they form a unique fingerprint.

Cite this