Inactivation of the dnaK gene in Clostridium difficile 630 Delta erm yields a temperature-sensitive phenotype and increases biofilm-forming ability

Shailesh Jain, Deborah Smyth, Barry O'Hagan, John Heap, Geoff McMullan, Nigel Minton, Nigel Ternan

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

Clostridium difficile infection is a growing problem in healthcare settings worldwide and resultsin a considerable socioeconomic impact. New hypervirulent strains and acquisition of antibioticresistance exacerbates pathogenesis; however, the survival strategy of C. difficile in the challenginggut environment still remains incompletely understood. We previously reported that clinically relevant heat-stress (37–41 °C) resulted in a classical heat-stress response with up-regulation of cellular chaperones. We used ClosTron to construct an insertional mutation in the dnaK gene of C. difficile 630 Δerm. The dnaK mutant exhibited temperature sensitivity, grew more slowly than C. difficile 630 Δerm and was less thermotolerant. Furthermore, the mutant was non-motile, had 4-fold lower expression of the fliC gene and lacked flagella on the cell surface. Mutant cells were some 50% longer than parental strain cells, and at optimal growth temperatures, they exhibited a 4-fold increase in the expression of class I chaperone genes including GroEL and GroES. Increased chaperone expression, in addition to the non-flagellated phenotype of the mutant, may account for the increased biofilm formation observed. Overall, the phenotype resulting from dnaK disruption is more akin to that observed in Escherichia coli dnaK mutants, rather than those in the Gram-positive model organism Bacillus subtilis.Clostridium difficile is recognised as the most common cause of infectious antibiotic-associated
LanguageEnglish
Article number17522
JournalScientific Reports
Volume7
Early online date13 Dec 2017
DOIs
Publication statusE-pub ahead of print - 13 Dec 2017

Fingerprint

Clostridium difficile
Gene Silencing
Biofilms
Phenotype
Temperature
MHC Class I Genes
Clostridium Infections
Heat-Shock Response
Flagella
Bacillus subtilis
Up-Regulation
Hot Temperature
Escherichia coli
Anti-Bacterial Agents
Delivery of Health Care
Gene Expression
Mutation
Growth
Genes

Keywords

  • Clostridium difficile gut pathogen ClosTron
  • chaperone gene dnaK

Cite this

@article{8d8cc6b559384932970a347c1be5463a,
title = "Inactivation of the dnaK gene in Clostridium difficile 630 Delta erm yields a temperature-sensitive phenotype and increases biofilm-forming ability",
abstract = "Clostridium difficile infection is a growing problem in healthcare settings worldwide and resultsin a considerable socioeconomic impact. New hypervirulent strains and acquisition of antibioticresistance exacerbates pathogenesis; however, the survival strategy of C. difficile in the challenginggut environment still remains incompletely understood. We previously reported that clinically relevant heat-stress (37–41 °C) resulted in a classical heat-stress response with up-regulation of cellular chaperones. We used ClosTron to construct an insertional mutation in the dnaK gene of C. difficile 630 Δerm. The dnaK mutant exhibited temperature sensitivity, grew more slowly than C. difficile 630 Δerm and was less thermotolerant. Furthermore, the mutant was non-motile, had 4-fold lower expression of the fliC gene and lacked flagella on the cell surface. Mutant cells were some 50{\%} longer than parental strain cells, and at optimal growth temperatures, they exhibited a 4-fold increase in the expression of class I chaperone genes including GroEL and GroES. Increased chaperone expression, in addition to the non-flagellated phenotype of the mutant, may account for the increased biofilm formation observed. Overall, the phenotype resulting from dnaK disruption is more akin to that observed in Escherichia coli dnaK mutants, rather than those in the Gram-positive model organism Bacillus subtilis.Clostridium difficile is recognised as the most common cause of infectious antibiotic-associated",
keywords = "Clostridium difficile gut pathogen ClosTron, chaperone gene dnaK",
author = "Shailesh Jain and Deborah Smyth and Barry O'Hagan and John Heap and Geoff McMullan and Nigel Minton and Nigel Ternan",
note = "Reference text: 1. Rupnik, M., Wilcox, M. H. & Gerding, D. N. Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat. Rev. Microbiol. 7, 526-536 (2009). 2. Johanesen, P. A. et al. Disruption of the gut microbiome: Clostridium difficile infection and the threat of antibiotic resistance. Genes 6, 1347-1360 (2015). 3. Carter, G.P. et al. Defining the roles of TcdA and TcdB in localized gastrointestinal disease, systemic organ damage, and the host response during Clostridium difficile infections. mBio. 6, e00551-15 (2015). 4. Bartlett, J. G. Historical perspectives on studies of Clostridium difficile and C. difficile infection. Clin. Infect. Dis. 46, S4-11 (2008). 5. Freeman, J. et al. Pan-European longitudinal surveillance of antibiotic resistance among prevalent Clostridium difficile ribotypes' study group. Pan-European longitudinal surveillance of antibiotic resistance among prevalent Clostridium difficile ribotypes. Clin. Microbiol. Infect.21, 248.e9-248.e16 (2015). 6. Kociolek, L. K. & Gerding, D. N. Breakthroughs in the treatment and prevention of Clostridium difficile infection. Nat. Rev. Gastroenterol. Hepatol. 13, 150-160 (2016). 7. Spigaglia, P. Recent advances in the understanding of antibiotic resistance in Clostridium difficile infection. Ther. Adv. Infect. Dis. 3, 23-42 (2016). 8. Saujet, L., Monot, M., Dupuy, B., Soutourina, O. & Martin-Verstraete, I. The key sigma factor of transition phase, SigH, controls sporulation, metabolism, and virulence factor expression in Clostridium difficile. J. Bacteriol. 193, 3186-3196 (2011). 9. Hutton, M. L, Mackin, K. E., Chakravorty, A. & Lyras, D. Small animal models for the study of Clostridium difficile disease pathogenesis. FEMS Microbiol. Lett. 352, 140-149 (2014). 10. Bouillaut, L., Dubois, T., Sonenshein, A. L. & Dupuy, B. Integration of metabolism and virulence in Clostridium difficile. Res. Microbiol. 166, 375-383 (2015). 11. Sun, X. & Hirota, S. A. The roles of host and pathogen factors and the innate immune response in the pathogenesis of Clostridium difficile infection. Mol. Immunol. 63, 193-202 (2015). 12. Stabler, R. A. et al. Comparative phylogenomics of Clostridium difficile reveals clade specificity and microevolution of hypervirulent strains. J. Bacteriol. 188, 7297-7305 (2006). 13. Stabler, R. A. et al. Comparative genome and phenotypic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium. Genome Biol. 10:R102 (2009). 14. Stabler, R. A. et al. Macro and micro diversity of Clostridium difficile isolates from diverse sources and geographical locations. PLOS ONE 7, e31559 (2012). 15. He, M. et al. Evolutionary dynamics of Clostridium difficile over short and long time scales. Proc. Natl. Acad. Sci. USA. 107, 7527-7532 (2010). 16. He, M. et al. Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat. Genet. 45, 109-113 (2013). 17. Cartman, S. T., Heap, J. T., Kuehne, S. A., Cockayne, A. & Minton, N. P. The emergence of 'hypervirulence' in Clostridium difficile. Int. J. Med. Microbiol. 300, 387-395 (2010). 18. Crowther, G. S. et al. Recurrence of dual-strain Clostridium difficile infection in an in vitro human gut model. J. Antimicrob. Chemother. 70, 2316-2321 (2015). 19. Sebaihia, M. et al. The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat. Genet. 38, 779-786 (2006). 20. Forgetta, V. et al. Fourteen-genome comparison identifies DNA markers for severe-disease-associated strains of Clostridium difficile. J. Clin. Microbiol. 49, 2230-2238 (2011). 21. Emerson, J. E., Stabler, R. A., Wren, B. W. & Fairweather, N. F. Microarray analysis of the transcriptional responses of Clostridium difficile to environmental and antibiotic stress. J. Med. Microbiol. 57, 757-764 (2008). 22. Scaria, J. et al. Clostridium difficile transcriptome analysis using pig ligated loop model reveals modulation of pathways not modulated in vitro. J. Infect. Dis. 203, 1613-1620 (2011). 23. Scaria, J. et al. Differential stress transcriptome landscape of historic and recently emerged hypervirulent strains of Clostridium difficile strains determined using RNA-seq. PLOS ONE. 8, e78489 (2013). 24. Chen, J. W. et al. Proteomic comparison of historic and recently emerged hypervirulent Clostridium difficile strains. J. Proteome. Res. 12, 1151-1161 (2013). 25. Janoir, C. et al. Adaptive strategies and pathogenesis of Clostridium difficile from in vivo transcriptomics. Infect. Immun. 81, 3757-3569 (2013). 26. Jain, S., Graham, C., Graham, R. L., McMullan, G. & Ternan, N. G. Quantitative proteomic analysis of the heat stress response in Clostridium difficile strain 630. J. Proteome. Res. 10, 3880-3890 (2011). 27. Ternan, N. G., Jain, S., Srivastava, M. & McMullan, G. Comparative transcriptional analysis of clinically relevant heat stress response in Clostridium difficile strain 630. PLOS ONE. 7, e42410 (2012). 28. Ternan, N. G., Jain, S., Graham, R. L. J. & McMullan, G. Semiquantitative analysis of clinical heat stress in Clostridium difficile strain 630 using a GeLC/MS workflow with emPAI quantitation. PLOS ONE. 9, e88960 (2014). 29. Xue, C., Zhao, X.-Q., Liu, C.-G, Chen, L.-J. & Bai, F.-W. Prospective and development of butanol as an advanced biofuel. Biotechnol.Adv. 31, 1575-1584. (2013). 30. Xue, C., Zhao, J., Chen, L., Yang, S.-T. & Bai, F. Recent advances and state-of-the-art strategies in strain and process engineering for biobutanol production by Clostridium acetobutylicum. Biotechnol. Adv. 35, 310-322. (2017). 31. Li, Q. et al. CRISPR-based genome editing and expression control systems in Clostridium acetobutylicum and Clostridium beijerinckii. Biotechnol. J. 11, 961–972. (2016). 32. Heap, J. T., Pennington, O. J., Cartman, S. T., Carter, G. P. & Minton, N. P. The ClosTron: A universal gene knock-out system for the genus Clostridium. J. Microbiol. Meth. 70, 452-464 (2007). 33. Heap, J. T. et al. The ClosTron: Mutagenesis in Clostridium refined and streamlined. J. Microbiol. Meth. 80, 49-55 (2010). 34. Kuehne, S. A. & Minton, N. P. ClosTron-mediated engineering of Clostridium. Bioengineered. 3, 247-254 (2012). 35. Underwood, S. et al. Characterization of the sporulation initiation pathway of Clostridium difficile and its role in toxin production. J. Bacteriol. 191, 7296-7305 (2009). 36. Susin, M. F., Baldini, R. L., Gueiros-Filho, F. & Gomes, S. L. GroES/GroEL and DnaK/DnaJ have distinct roles in stress responses and during cell cycle progression in Caulobacter crescentus. J. Bacteriol. 88, 8044-8053 (2006). 37. Tasteyre, A., Barc, M. C., Collignon, A., Boureau, H. & Karjalainen, T. Role of FliC and FliD flagellar proteins of Clostridium difficile in adherence and gut colonization. Infect. Immun. 69, 7937-7940 (2001). 38. Tasteyre, A. et al. A Clostridium difficile gene encoding flagellin. Microbiology 146, 957-966 (2000). 39. Twine, S. M. et al. Motility and flagellar glycosylation in Clostridium difficile. J. Bacteriol. 191, 7050-7062 (2000). 40. Straus, D., Walter, W. & Gross, C.A. DnaK, DnaJ, and GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of sigma 32. Genes Dev. 4, 2202-2209 (1990). 41. Koch, B., Kilstrup. M., Vogensen, F. K. & Hammer, K. Induced levels of heat shock proteins in a dnaK mutant of Lactococcus lactis. J. Bacteriol. 180, 3873-3881 (1998). 42. Zhao, K., Liu, M. & Burgess, R. R. The global transcriptional response of Escherichia coli to induced sigma 32 protein involves sigma 32 regulon activation followed by inactivation and degradation of sigma 32 in vivo. J. Biol. Chem. 280, 17758-17768 (2005). 43. Deligianni, E. et al. Pseudomonas aeruginosa cystic fibrosis isolates of similar RAPD genotype exhibit diversity in biofilm forming ability in vitro. BMC Microbiol. 10, 38 (2010). 44. O'Toole, G.A. & Kolter, R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol. Microbiol. 28, 449-461 (1998). 45. Varga, J. J., Therit, B. & Melville, S. B. Type IV pili and the CcpA protein are needed for maximal biofilm formation by the Gram-positive anaerobic pathogen Clostridium perfringens. Infect. Immun. 76, 4944-4951 (2008). 46. Selby, K. et al. Important role of class I heat shock genes hrcA and dnaK in the heat shock response and the response to pH and NaCl stress of group I Clostridium botulinum strain ATCC 3502. Appl. Environ. Microbiol. 77, 2823-2830 (2011). 47. Itikawa, H. & Ryu, J. Isolation and characterization of a temperature-sensitive dnaK mutant of Escherichia coli B. J. Bacteriol. 138, 339-344 (1979). 48. Paek, K. H. & Walker, G. C. Escherichia coli dnaK null mutants are inviable at high temperature. J. Bacteriol. 169, 283-290 (1987). 49. Bukau, B. & Walker, G. C. Cellular defects caused by deletion of the Escherichia coli dnaK gene indicate roles for heat shock protein in normal metabolism. J. Bacteriol. 171, 2337-2346 (1989). 50. Singh, V. K. et al. Role for dnaK locus in tolerance of multiple stresses in Staphylococcus aureus. Microbiology 153, 3162-3173 (2007). 51. Schulz, A., Tzschaschel, B. & Schumann, W. Isolation and analysis of mutants of the dnaK operon of Bacillus subtilis. Mol. Microbiol. 15, 421-429 (1995). 52. McCarty, J. S. & Walker, G. C. DnaK mutants defective in ATPase activity are defective in negative regulation of the heat shock response: expression of mutant DnaK proteins results in filamentation. J. Bacteriol. 176, 764-780 (1994). 53. Margolin, W. FtsZ and the division of prokaryotic cells and organelles. Nat. Rev. Mol. Cell Biol. 6, 862-871 (2005). 54. Sugimoto, S., Saruwatari, K., Higashi, C. & Sonomoto, K. The proper ratio of GrpE to DnaK is important for protein quality control by the DnaK-DnaJ-GrpE chaperone system and for cell division. Microbiology 154, 1876-1885 (1990). 55. Homuth, G., Masuda, S., Mogk, A., Kobayashi, Y. & Schumann, W. The dnaK operon of Bacillus subtilis is heptacistronic. J. Bacteriol. 179, 1153-1164 (1997). 56. Homuth, G., Mogk, A. & Schumann, W. Post-transcriptional regulation of the Bacillus subtilis dnaK operon. Mol. Microbiol. 32, 1183-1197 (1999). 57. Takaya, A., Tomoyasu, T., Matsui, H., & Yamamoto, T. The DnaK/DnaJ chaperone machinery of Salmonella enterica serovar Typhimurium is essential for invasion of epithelial cells and survival within macrophages, leading to systemic infection. Inf. Immunity. 72, 1364–1373. (2004). 58. Hecker, M., Pan{\'e}-Farr{\'e}, J. & V{\"o}lker, U. SigB-dependent general stress response in Bacillus subtilis and related gram-positive bacteria. Annu. Rev. Microbiol. 61, 215-236 (2007). 59. Narberhaus, F. Negative regulation of bacterial heat shock genes. Mol. Microbiol. 31, 1-8 (1999). 60. Helmann, J. D. et al. Global transcriptional response of Bacillus subtilis to heat shock. J. Bacteriol. 183, 7318-7328 (2001). 61. Mogk, A. et al. The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis. EMBO J. 16, 4579-4590 (1997). 62. Schulz, A. & Schumann, W. hrcA, the first gene of the Bacillus subtilis dnaK operon encodes a negative regulator of class I heat shock genes. J. Bacteriol. 178, 1088-1093 (1996). 63. Poutanen, S. M. & Simor. A. E. Clostridium difficile-associated diarrhea in adults. CMAJ 171, 51-58 (2004). 64. Shi, W., Zhou, Y., Wild, J., Adler, J. & Gross, C. A. DnaK, DnaJ, and GrpE are required for flagellum synthesis in Escherichia coli. J. Bacteriol. 174, 6256-6263 (1992). 65. Hossain, M. M. & Tsuyumu, S. Flagella-mediated motility is required for biofilm formation by Erwinia carotovora subsp. carotovora. J. Gen. Plant Pathol. 72, 34-39 (2006) 66. Houry, A., Briandet, R., Aymerich, S. & Gohar, M. Involvement of motility and flagella in Bacillus cereus biofilm formation. Microbiology 56, 1009-1018 (2010). 67. Hennequin, C. F. et al. GroEL (Hsp60) of Clostridium difficile is involved in cell adherence. Microbiology 147, 87-96 (2001). 68. Ensgraber, M. & Loos, M. A 66-kilodalton heat shock protein of Salmonella typhimurium is responsible for binding of the bacterium to intestinal mucus. Infect. Immun. 60, 3072-3078 (1992). 69. Phadnis, S. H. et al. Surface localization of Helicobacter pylori urease and a heat shock protein homolog requires bacterial autolysis. Infect. Immun. 64, 905-912 (1996). 70. Bergonzelli, G. et al. GroEL of Lactobacillus johnsonii La1 (NCC 533) is cell surface associated: potential role in interactions with the host and the gastric pathogen Helicobacter pylori. Infect. Immun. 74, 425-434 (2006). 71. Jain, S., Graham, R. L., McMullan, G. & Ternan, N. G. Proteomic analysis of the insoluble subproteome of Clostridium difficile strain 630. FEMS Microbiol. Lett. 312, 151-159 (2010). 72. Hussain, H. A., Roberts, A. P. & Mullany, P. Generation of an erythromycin-sensitive derivative of Clostridium difficile strain 630 (630Deltaerm) and demonstration that the conjugative transposon Tn916DeltaE enters the genome of this strain at multiple sites. J. Med. Microbiol. 54, 137-141 (2005). 73. Heap, J. T., Pennington, O. J., Cartman, S. T. & Minton, N. P. A modular system for Clostridium shuttle plasmids. J. Microbiol. Meth. 78, 79-85 (2009). 74. Lem{\'e}e, L., Dhalluin, A., Pestel-Caron, M., Lemeland, J. & Pons, J. Multilocus sequence typing analysis of human and animal Clostridium difficile isolates of various toxigenic types. J. Clin. Microbiol. 42, 2609-2617 (2004). 75. Lem{\'e}e, L., Bourgeois, I., Ruffin, E., Collignon, A., Lemeland, J. & Pons, J. Multilocus sequence analysis and comparative evolution of virulence-associated genes and housekeeping genes of Clostridium difficile. Microbiol. 151, 3171-3180 (2005).",
year = "2017",
month = "12",
day = "13",
doi = "10.1038/s41598-017-17583-9",
language = "English",
volume = "7",
journal = "Scientific Reports",
issn = "2045-2322",

}

Inactivation of the dnaK gene in Clostridium difficile 630 Delta erm yields a temperature-sensitive phenotype and increases biofilm-forming ability. / Jain, Shailesh; Smyth, Deborah; O'Hagan, Barry; Heap, John; McMullan, Geoff; Minton, Nigel; Ternan, Nigel.

In: Scientific Reports, Vol. 7, 17522, 13.12.2017.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Inactivation of the dnaK gene in Clostridium difficile 630 Delta erm yields a temperature-sensitive phenotype and increases biofilm-forming ability

AU - Jain, Shailesh

AU - Smyth, Deborah

AU - O'Hagan, Barry

AU - Heap, John

AU - McMullan, Geoff

AU - Minton, Nigel

AU - Ternan, Nigel

N1 - Reference text: 1. Rupnik, M., Wilcox, M. H. & Gerding, D. N. Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat. Rev. Microbiol. 7, 526-536 (2009). 2. Johanesen, P. A. et al. Disruption of the gut microbiome: Clostridium difficile infection and the threat of antibiotic resistance. Genes 6, 1347-1360 (2015). 3. Carter, G.P. et al. Defining the roles of TcdA and TcdB in localized gastrointestinal disease, systemic organ damage, and the host response during Clostridium difficile infections. mBio. 6, e00551-15 (2015). 4. Bartlett, J. G. Historical perspectives on studies of Clostridium difficile and C. difficile infection. Clin. Infect. Dis. 46, S4-11 (2008). 5. Freeman, J. et al. Pan-European longitudinal surveillance of antibiotic resistance among prevalent Clostridium difficile ribotypes' study group. Pan-European longitudinal surveillance of antibiotic resistance among prevalent Clostridium difficile ribotypes. Clin. Microbiol. Infect.21, 248.e9-248.e16 (2015). 6. Kociolek, L. K. & Gerding, D. N. Breakthroughs in the treatment and prevention of Clostridium difficile infection. Nat. Rev. Gastroenterol. Hepatol. 13, 150-160 (2016). 7. Spigaglia, P. Recent advances in the understanding of antibiotic resistance in Clostridium difficile infection. Ther. Adv. Infect. Dis. 3, 23-42 (2016). 8. Saujet, L., Monot, M., Dupuy, B., Soutourina, O. & Martin-Verstraete, I. The key sigma factor of transition phase, SigH, controls sporulation, metabolism, and virulence factor expression in Clostridium difficile. J. Bacteriol. 193, 3186-3196 (2011). 9. Hutton, M. L, Mackin, K. E., Chakravorty, A. & Lyras, D. Small animal models for the study of Clostridium difficile disease pathogenesis. FEMS Microbiol. Lett. 352, 140-149 (2014). 10. Bouillaut, L., Dubois, T., Sonenshein, A. L. & Dupuy, B. Integration of metabolism and virulence in Clostridium difficile. Res. Microbiol. 166, 375-383 (2015). 11. Sun, X. & Hirota, S. A. The roles of host and pathogen factors and the innate immune response in the pathogenesis of Clostridium difficile infection. Mol. Immunol. 63, 193-202 (2015). 12. Stabler, R. A. et al. Comparative phylogenomics of Clostridium difficile reveals clade specificity and microevolution of hypervirulent strains. J. Bacteriol. 188, 7297-7305 (2006). 13. Stabler, R. A. et al. Comparative genome and phenotypic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium. Genome Biol. 10:R102 (2009). 14. Stabler, R. A. et al. Macro and micro diversity of Clostridium difficile isolates from diverse sources and geographical locations. PLOS ONE 7, e31559 (2012). 15. He, M. et al. Evolutionary dynamics of Clostridium difficile over short and long time scales. Proc. Natl. Acad. Sci. USA. 107, 7527-7532 (2010). 16. He, M. et al. Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat. Genet. 45, 109-113 (2013). 17. Cartman, S. T., Heap, J. T., Kuehne, S. A., Cockayne, A. & Minton, N. P. The emergence of 'hypervirulence' in Clostridium difficile. Int. J. Med. Microbiol. 300, 387-395 (2010). 18. Crowther, G. S. et al. Recurrence of dual-strain Clostridium difficile infection in an in vitro human gut model. J. Antimicrob. Chemother. 70, 2316-2321 (2015). 19. Sebaihia, M. et al. The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat. Genet. 38, 779-786 (2006). 20. Forgetta, V. et al. Fourteen-genome comparison identifies DNA markers for severe-disease-associated strains of Clostridium difficile. J. Clin. Microbiol. 49, 2230-2238 (2011). 21. Emerson, J. E., Stabler, R. A., Wren, B. W. & Fairweather, N. F. Microarray analysis of the transcriptional responses of Clostridium difficile to environmental and antibiotic stress. J. Med. Microbiol. 57, 757-764 (2008). 22. Scaria, J. et al. Clostridium difficile transcriptome analysis using pig ligated loop model reveals modulation of pathways not modulated in vitro. J. Infect. Dis. 203, 1613-1620 (2011). 23. Scaria, J. et al. Differential stress transcriptome landscape of historic and recently emerged hypervirulent strains of Clostridium difficile strains determined using RNA-seq. PLOS ONE. 8, e78489 (2013). 24. Chen, J. W. et al. Proteomic comparison of historic and recently emerged hypervirulent Clostridium difficile strains. J. Proteome. Res. 12, 1151-1161 (2013). 25. Janoir, C. et al. Adaptive strategies and pathogenesis of Clostridium difficile from in vivo transcriptomics. Infect. Immun. 81, 3757-3569 (2013). 26. Jain, S., Graham, C., Graham, R. L., McMullan, G. & Ternan, N. G. Quantitative proteomic analysis of the heat stress response in Clostridium difficile strain 630. J. Proteome. Res. 10, 3880-3890 (2011). 27. Ternan, N. G., Jain, S., Srivastava, M. & McMullan, G. Comparative transcriptional analysis of clinically relevant heat stress response in Clostridium difficile strain 630. PLOS ONE. 7, e42410 (2012). 28. Ternan, N. G., Jain, S., Graham, R. L. J. & McMullan, G. Semiquantitative analysis of clinical heat stress in Clostridium difficile strain 630 using a GeLC/MS workflow with emPAI quantitation. PLOS ONE. 9, e88960 (2014). 29. Xue, C., Zhao, X.-Q., Liu, C.-G, Chen, L.-J. & Bai, F.-W. Prospective and development of butanol as an advanced biofuel. Biotechnol.Adv. 31, 1575-1584. (2013). 30. Xue, C., Zhao, J., Chen, L., Yang, S.-T. & Bai, F. Recent advances and state-of-the-art strategies in strain and process engineering for biobutanol production by Clostridium acetobutylicum. Biotechnol. Adv. 35, 310-322. (2017). 31. Li, Q. et al. CRISPR-based genome editing and expression control systems in Clostridium acetobutylicum and Clostridium beijerinckii. Biotechnol. J. 11, 961–972. (2016). 32. Heap, J. T., Pennington, O. J., Cartman, S. T., Carter, G. P. & Minton, N. P. The ClosTron: A universal gene knock-out system for the genus Clostridium. J. Microbiol. Meth. 70, 452-464 (2007). 33. Heap, J. T. et al. The ClosTron: Mutagenesis in Clostridium refined and streamlined. J. Microbiol. Meth. 80, 49-55 (2010). 34. Kuehne, S. A. & Minton, N. P. ClosTron-mediated engineering of Clostridium. Bioengineered. 3, 247-254 (2012). 35. Underwood, S. et al. Characterization of the sporulation initiation pathway of Clostridium difficile and its role in toxin production. J. Bacteriol. 191, 7296-7305 (2009). 36. Susin, M. F., Baldini, R. L., Gueiros-Filho, F. & Gomes, S. L. GroES/GroEL and DnaK/DnaJ have distinct roles in stress responses and during cell cycle progression in Caulobacter crescentus. J. Bacteriol. 88, 8044-8053 (2006). 37. Tasteyre, A., Barc, M. C., Collignon, A., Boureau, H. & Karjalainen, T. Role of FliC and FliD flagellar proteins of Clostridium difficile in adherence and gut colonization. Infect. Immun. 69, 7937-7940 (2001). 38. Tasteyre, A. et al. A Clostridium difficile gene encoding flagellin. Microbiology 146, 957-966 (2000). 39. Twine, S. M. et al. Motility and flagellar glycosylation in Clostridium difficile. J. Bacteriol. 191, 7050-7062 (2000). 40. Straus, D., Walter, W. & Gross, C.A. DnaK, DnaJ, and GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of sigma 32. Genes Dev. 4, 2202-2209 (1990). 41. Koch, B., Kilstrup. M., Vogensen, F. K. & Hammer, K. Induced levels of heat shock proteins in a dnaK mutant of Lactococcus lactis. J. Bacteriol. 180, 3873-3881 (1998). 42. Zhao, K., Liu, M. & Burgess, R. R. The global transcriptional response of Escherichia coli to induced sigma 32 protein involves sigma 32 regulon activation followed by inactivation and degradation of sigma 32 in vivo. J. Biol. Chem. 280, 17758-17768 (2005). 43. Deligianni, E. et al. Pseudomonas aeruginosa cystic fibrosis isolates of similar RAPD genotype exhibit diversity in biofilm forming ability in vitro. BMC Microbiol. 10, 38 (2010). 44. O'Toole, G.A. & Kolter, R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol. Microbiol. 28, 449-461 (1998). 45. Varga, J. J., Therit, B. & Melville, S. B. Type IV pili and the CcpA protein are needed for maximal biofilm formation by the Gram-positive anaerobic pathogen Clostridium perfringens. Infect. Immun. 76, 4944-4951 (2008). 46. Selby, K. et al. Important role of class I heat shock genes hrcA and dnaK in the heat shock response and the response to pH and NaCl stress of group I Clostridium botulinum strain ATCC 3502. Appl. Environ. Microbiol. 77, 2823-2830 (2011). 47. Itikawa, H. & Ryu, J. Isolation and characterization of a temperature-sensitive dnaK mutant of Escherichia coli B. J. Bacteriol. 138, 339-344 (1979). 48. Paek, K. H. & Walker, G. C. Escherichia coli dnaK null mutants are inviable at high temperature. J. Bacteriol. 169, 283-290 (1987). 49. Bukau, B. & Walker, G. C. Cellular defects caused by deletion of the Escherichia coli dnaK gene indicate roles for heat shock protein in normal metabolism. J. Bacteriol. 171, 2337-2346 (1989). 50. Singh, V. K. et al. Role for dnaK locus in tolerance of multiple stresses in Staphylococcus aureus. Microbiology 153, 3162-3173 (2007). 51. Schulz, A., Tzschaschel, B. & Schumann, W. Isolation and analysis of mutants of the dnaK operon of Bacillus subtilis. Mol. Microbiol. 15, 421-429 (1995). 52. McCarty, J. S. & Walker, G. C. DnaK mutants defective in ATPase activity are defective in negative regulation of the heat shock response: expression of mutant DnaK proteins results in filamentation. J. Bacteriol. 176, 764-780 (1994). 53. Margolin, W. FtsZ and the division of prokaryotic cells and organelles. Nat. Rev. Mol. Cell Biol. 6, 862-871 (2005). 54. Sugimoto, S., Saruwatari, K., Higashi, C. & Sonomoto, K. The proper ratio of GrpE to DnaK is important for protein quality control by the DnaK-DnaJ-GrpE chaperone system and for cell division. Microbiology 154, 1876-1885 (1990). 55. Homuth, G., Masuda, S., Mogk, A., Kobayashi, Y. & Schumann, W. The dnaK operon of Bacillus subtilis is heptacistronic. J. Bacteriol. 179, 1153-1164 (1997). 56. Homuth, G., Mogk, A. & Schumann, W. Post-transcriptional regulation of the Bacillus subtilis dnaK operon. Mol. Microbiol. 32, 1183-1197 (1999). 57. Takaya, A., Tomoyasu, T., Matsui, H., & Yamamoto, T. The DnaK/DnaJ chaperone machinery of Salmonella enterica serovar Typhimurium is essential for invasion of epithelial cells and survival within macrophages, leading to systemic infection. Inf. Immunity. 72, 1364–1373. (2004). 58. Hecker, M., Pané-Farré, J. & Völker, U. SigB-dependent general stress response in Bacillus subtilis and related gram-positive bacteria. Annu. Rev. Microbiol. 61, 215-236 (2007). 59. Narberhaus, F. Negative regulation of bacterial heat shock genes. Mol. Microbiol. 31, 1-8 (1999). 60. Helmann, J. D. et al. Global transcriptional response of Bacillus subtilis to heat shock. J. Bacteriol. 183, 7318-7328 (2001). 61. Mogk, A. et al. The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis. EMBO J. 16, 4579-4590 (1997). 62. Schulz, A. & Schumann, W. hrcA, the first gene of the Bacillus subtilis dnaK operon encodes a negative regulator of class I heat shock genes. J. Bacteriol. 178, 1088-1093 (1996). 63. Poutanen, S. M. & Simor. A. E. Clostridium difficile-associated diarrhea in adults. CMAJ 171, 51-58 (2004). 64. Shi, W., Zhou, Y., Wild, J., Adler, J. & Gross, C. A. DnaK, DnaJ, and GrpE are required for flagellum synthesis in Escherichia coli. J. Bacteriol. 174, 6256-6263 (1992). 65. Hossain, M. M. & Tsuyumu, S. Flagella-mediated motility is required for biofilm formation by Erwinia carotovora subsp. carotovora. J. Gen. Plant Pathol. 72, 34-39 (2006) 66. Houry, A., Briandet, R., Aymerich, S. & Gohar, M. Involvement of motility and flagella in Bacillus cereus biofilm formation. Microbiology 56, 1009-1018 (2010). 67. Hennequin, C. F. et al. GroEL (Hsp60) of Clostridium difficile is involved in cell adherence. Microbiology 147, 87-96 (2001). 68. Ensgraber, M. & Loos, M. A 66-kilodalton heat shock protein of Salmonella typhimurium is responsible for binding of the bacterium to intestinal mucus. Infect. Immun. 60, 3072-3078 (1992). 69. Phadnis, S. H. et al. Surface localization of Helicobacter pylori urease and a heat shock protein homolog requires bacterial autolysis. Infect. Immun. 64, 905-912 (1996). 70. Bergonzelli, G. et al. GroEL of Lactobacillus johnsonii La1 (NCC 533) is cell surface associated: potential role in interactions with the host and the gastric pathogen Helicobacter pylori. Infect. Immun. 74, 425-434 (2006). 71. Jain, S., Graham, R. L., McMullan, G. & Ternan, N. G. Proteomic analysis of the insoluble subproteome of Clostridium difficile strain 630. FEMS Microbiol. Lett. 312, 151-159 (2010). 72. Hussain, H. A., Roberts, A. P. & Mullany, P. Generation of an erythromycin-sensitive derivative of Clostridium difficile strain 630 (630Deltaerm) and demonstration that the conjugative transposon Tn916DeltaE enters the genome of this strain at multiple sites. J. Med. Microbiol. 54, 137-141 (2005). 73. Heap, J. T., Pennington, O. J., Cartman, S. T. & Minton, N. P. A modular system for Clostridium shuttle plasmids. J. Microbiol. Meth. 78, 79-85 (2009). 74. Lemée, L., Dhalluin, A., Pestel-Caron, M., Lemeland, J. & Pons, J. Multilocus sequence typing analysis of human and animal Clostridium difficile isolates of various toxigenic types. J. Clin. Microbiol. 42, 2609-2617 (2004). 75. Lemée, L., Bourgeois, I., Ruffin, E., Collignon, A., Lemeland, J. & Pons, J. Multilocus sequence analysis and comparative evolution of virulence-associated genes and housekeeping genes of Clostridium difficile. Microbiol. 151, 3171-3180 (2005).

PY - 2017/12/13

Y1 - 2017/12/13

N2 - Clostridium difficile infection is a growing problem in healthcare settings worldwide and resultsin a considerable socioeconomic impact. New hypervirulent strains and acquisition of antibioticresistance exacerbates pathogenesis; however, the survival strategy of C. difficile in the challenginggut environment still remains incompletely understood. We previously reported that clinically relevant heat-stress (37–41 °C) resulted in a classical heat-stress response with up-regulation of cellular chaperones. We used ClosTron to construct an insertional mutation in the dnaK gene of C. difficile 630 Δerm. The dnaK mutant exhibited temperature sensitivity, grew more slowly than C. difficile 630 Δerm and was less thermotolerant. Furthermore, the mutant was non-motile, had 4-fold lower expression of the fliC gene and lacked flagella on the cell surface. Mutant cells were some 50% longer than parental strain cells, and at optimal growth temperatures, they exhibited a 4-fold increase in the expression of class I chaperone genes including GroEL and GroES. Increased chaperone expression, in addition to the non-flagellated phenotype of the mutant, may account for the increased biofilm formation observed. Overall, the phenotype resulting from dnaK disruption is more akin to that observed in Escherichia coli dnaK mutants, rather than those in the Gram-positive model organism Bacillus subtilis.Clostridium difficile is recognised as the most common cause of infectious antibiotic-associated

AB - Clostridium difficile infection is a growing problem in healthcare settings worldwide and resultsin a considerable socioeconomic impact. New hypervirulent strains and acquisition of antibioticresistance exacerbates pathogenesis; however, the survival strategy of C. difficile in the challenginggut environment still remains incompletely understood. We previously reported that clinically relevant heat-stress (37–41 °C) resulted in a classical heat-stress response with up-regulation of cellular chaperones. We used ClosTron to construct an insertional mutation in the dnaK gene of C. difficile 630 Δerm. The dnaK mutant exhibited temperature sensitivity, grew more slowly than C. difficile 630 Δerm and was less thermotolerant. Furthermore, the mutant was non-motile, had 4-fold lower expression of the fliC gene and lacked flagella on the cell surface. Mutant cells were some 50% longer than parental strain cells, and at optimal growth temperatures, they exhibited a 4-fold increase in the expression of class I chaperone genes including GroEL and GroES. Increased chaperone expression, in addition to the non-flagellated phenotype of the mutant, may account for the increased biofilm formation observed. Overall, the phenotype resulting from dnaK disruption is more akin to that observed in Escherichia coli dnaK mutants, rather than those in the Gram-positive model organism Bacillus subtilis.Clostridium difficile is recognised as the most common cause of infectious antibiotic-associated

KW - Clostridium difficile gut pathogen ClosTron

KW - chaperone gene dnaK

U2 - 10.1038/s41598-017-17583-9

DO - 10.1038/s41598-017-17583-9

M3 - Article

VL - 7

JO - Scientific Reports

T2 - Scientific Reports

JF - Scientific Reports

SN - 2045-2322

M1 - 17522

ER -