Improving the Through-Thickness Thermal Conductivity of Carbon Fiber/Epoxy Laminates by Direct Growth of SiC/Graphene Heterostructures on Carbon Fibers

Anastasios Karakasidis, Abhijit Ganguly, C.E. Salmas, Preetam Sharma, P Papakonstantinou

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)
25 Downloads (Pure)

Abstract

Poor thermal conductivity in the through-thickness direction is a critical limitation in the performance of carbon fiber-reinforced polymer (CFRP) composites over a broad range of applications in the aviation industry, where heat dissipation is required (e.g., battery packs, electronic housing, and heat spreaders). In this work, it is demonstrated for the first time that a hierarchical network of vertically oriented graphene nanoflakes (GNFs), with nanoconfined silicon carbide (SiC) nanocrystals, self-assembled on carbon fibers (CFs) can provide significant improvement to the thermal conductivity (TC) of CFRPs in the through-thickness direction. The vertically aligned SiC/GNF heterostructures were grown directly on CFs for the first time by single-step plasma-enhanced chemical vapor deposition (PECVD) employing tetramethylsilane (TMS) and methane (CH4) gases at temperatures of 800 and 950 °C. At the deposition temperature of 950 °C, the controlled introduction of SiC/GNF heterostructures induced a 56% improvement in through-thickness TC over the bare CFRP counterparts while simultaneously preserving the tensile strength. The increase in thermal conductivity is accomplished by SiC nanocrystals, which serve as linkage thermal conducting paths between the vertical graphene layers, further enhancing the smooth transmission of phonons in the vertical direction. The work demonstrates for the first time the unique potential of novel SiC/GNF heterostructures for attaining strong and thermally conductive multifunctional CFRPs.
Original languageEnglish
Pages (from-to)24406-24417
Number of pages12
JournalACS Omega
Volume8
Issue number27
Early online date28 Jun 2023
DOIs
Publication statusPublished (in print/issue) - 11 Jul 2023

Bibliographical note

Funding Information:
The authors acknowledge the support from the Air Force Office of Scientific Research (AFOSR) under grant no. FA9550-17-1-0042, the Department for the Economy (DfE) in Northern Ireland, and Ulster University.

Publisher Copyright:
© 2023 The Authors. Published by American Chemical Society.

Keywords

  • silicon carbide
  • carbon fiber reinforced polymer (CFRP) composites
  • heterostructures
  • Thermal conductivity
  • Tensile strength
  • Mechanical properties
  • 2D Materials
  • hybrid structures
  • laminates
  • composites
  • fracture toughness (mode I)

Fingerprint

Dive into the research topics of 'Improving the Through-Thickness Thermal Conductivity of Carbon Fiber/Epoxy Laminates by Direct Growth of SiC/Graphene Heterostructures on Carbon Fibers'. Together they form a unique fingerprint.

Cite this