TY - JOUR
T1 - Improving the Signal-To-Noise Ratio When Monitoring Countermovement Jump Performance
T2 - Signal-to-noise ratio of CMJ performance
AU - Kennedy, Rodney
AU - Drake, David
PY - 2018/5/8
Y1 - 2018/5/8
N2 - Countermovement jump (CMJ) performance has been routinely used to monitor neuromuscular status. However, the protocol used to establish the criterion score is not well documented. The purpose of this study was to examine how the protocol used would influence of the sensitivity of CMJ variables in rugby union players. Fifteen male (age: 19.7 ± 0.5 years) rugby union players performed 8 CMJs on 2 occasions, separated by 7 days. The between-session coefficient of variation (CV) was calculated using 2 techniques for treating multiple trials, the average, and the trial with the best jump height (JH), and then compared with the smallest worthwhile change (SWC). The signal-to-noise ratio was measured as the group mean change in a variable divided by the CV. Using the average value across multiple trials is superior to the best trial method, based on lower CVs for all variables. Only the average performance across 6 or more trials was classified as ideal (CV < 0.5 × SWC) for peak velocity (PV). In addition, the signal-to-noise ratio for peak concentric power (PCP), PV, and JH were classified as good, irrespective of the treatment method. Although increasing the number of trials can reduce the random error, it may be pragmatic to simply take the average from 2 to 3 trials, facilitating a CV < SWC for PV, PCP, and JH. Due to its simplicity, JH may be considered the principal variable to monitor neuromuscular fatigue.
AB - Countermovement jump (CMJ) performance has been routinely used to monitor neuromuscular status. However, the protocol used to establish the criterion score is not well documented. The purpose of this study was to examine how the protocol used would influence of the sensitivity of CMJ variables in rugby union players. Fifteen male (age: 19.7 ± 0.5 years) rugby union players performed 8 CMJs on 2 occasions, separated by 7 days. The between-session coefficient of variation (CV) was calculated using 2 techniques for treating multiple trials, the average, and the trial with the best jump height (JH), and then compared with the smallest worthwhile change (SWC). The signal-to-noise ratio was measured as the group mean change in a variable divided by the CV. Using the average value across multiple trials is superior to the best trial method, based on lower CVs for all variables. Only the average performance across 6 or more trials was classified as ideal (CV < 0.5 × SWC) for peak velocity (PV). In addition, the signal-to-noise ratio for peak concentric power (PCP), PV, and JH were classified as good, irrespective of the treatment method. Although increasing the number of trials can reduce the random error, it may be pragmatic to simply take the average from 2 to 3 trials, facilitating a CV < SWC for PV, PCP, and JH. Due to its simplicity, JH may be considered the principal variable to monitor neuromuscular fatigue.
KW - Athletic performance
KW - movement
KW - sensitivity
KW - probability
UR - https://pure.ulster.ac.uk/en/searchAll/index/?search=12339683&pageSize=25&showAdvanced=false&allConcepts=true&inferConcepts=true&searchBy=PartOfNameOrTitle
U2 - 10.1519/JSC.0000000000002615
DO - 10.1519/JSC.0000000000002615
M3 - Article
C2 - 29742747
JO - Journal of Strength and Conditioning Research
JF - Journal of Strength and Conditioning Research
SN - 1064-8011
ER -