Impressive abrasion rates of marked pebbles on a coarse-clastic beach within a 13-month timespan

Duccio Bertoni, Giovanni Sarti, Edoardo Grottoli, Paolo Ciavola, Alessandro Pozzebon, Gabor Domokos, Tímea Novák-Szabó

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

In this paper the abrasion rate on a coarse-clastic beach was evaluated by calculating the volume loss recorded on indigenous pebbles within a 13-month timespan. The experiment was carried out at Marina di Pisa (Italy) on an artificial beach that was built to counteract the erosion processes affecting this sector of the coast. A total of 240 marble pebbles (120 rounded and 120 angular) were marked using the RFID technology and injected on the beach. The volume loss measured after consecutive recovery campaigns was progressively increasing, reaching the maximum value after 13 months (61% overall). The average volume loss is consistent between rounded and angular pebbles at any time (59.3% and 64.2% after 13 months respectively), meaning that the roundness is not a primary control factor on abrasion rate. The pebbles that did not reach such abrasion rates after 8 and 10 months (volume loss less than 20%) were found at heights equal or greater than 2 m above mean sea level, on the crest of the storm berm that formed during the strongest storms. This implies that the highest wearing is achieved in the lower portion of the backshore, which is also the area that underwent major topographic modifications. Here, sea water action might also exert chemical influence on the pebbles, adding to the mechanical abrasion. The main result of this research, indicating an impressive volume loss on beach pebbles in a short timespan, could be of key importance for coastal managers. The optimization of coarse sediment beach nourishments is also relevant, taking into right consideration that the volume loss due to sediment abrasion might exceed 50% of the original fill volume just after 1 year in the most dynamic portion of the beach.

LanguageEnglish
Pages175-180
Number of pages6
JournalMarine Geology
Volume381
Early online date22 Sep 2016
DOIs
Publication statusPublished - 1 Nov 2016

Fingerprint

abrasion
Beaches
pebble
Abrasion
beach
Sediments
Marinas
Calcium Carbonate
beach nourishment
Sea level
berm
Radio frequency identification (RFID)
Coastal zones
rate
marina
marble
Erosion
Managers
sediment
loss

Keywords

  • Abrasion rate
  • Beach nourishment
  • Coarse-clastic beach
  • Coastal management
  • Marina di Pisa
  • Pebble

Cite this

Bertoni, Duccio ; Sarti, Giovanni ; Grottoli, Edoardo ; Ciavola, Paolo ; Pozzebon, Alessandro ; Domokos, Gabor ; Novák-Szabó, Tímea. / Impressive abrasion rates of marked pebbles on a coarse-clastic beach within a 13-month timespan. In: Marine Geology. 2016 ; Vol. 381. pp. 175-180.
@article{a507264f5a674bc790967ee6b58751b1,
title = "Impressive abrasion rates of marked pebbles on a coarse-clastic beach within a 13-month timespan",
abstract = "In this paper the abrasion rate on a coarse-clastic beach was evaluated by calculating the volume loss recorded on indigenous pebbles within a 13-month timespan. The experiment was carried out at Marina di Pisa (Italy) on an artificial beach that was built to counteract the erosion processes affecting this sector of the coast. A total of 240 marble pebbles (120 rounded and 120 angular) were marked using the RFID technology and injected on the beach. The volume loss measured after consecutive recovery campaigns was progressively increasing, reaching the maximum value after 13 months (61{\%} overall). The average volume loss is consistent between rounded and angular pebbles at any time (59.3{\%} and 64.2{\%} after 13 months respectively), meaning that the roundness is not a primary control factor on abrasion rate. The pebbles that did not reach such abrasion rates after 8 and 10 months (volume loss less than 20{\%}) were found at heights equal or greater than 2 m above mean sea level, on the crest of the storm berm that formed during the strongest storms. This implies that the highest wearing is achieved in the lower portion of the backshore, which is also the area that underwent major topographic modifications. Here, sea water action might also exert chemical influence on the pebbles, adding to the mechanical abrasion. The main result of this research, indicating an impressive volume loss on beach pebbles in a short timespan, could be of key importance for coastal managers. The optimization of coarse sediment beach nourishments is also relevant, taking into right consideration that the volume loss due to sediment abrasion might exceed 50{\%} of the original fill volume just after 1 year in the most dynamic portion of the beach.",
keywords = "Abrasion rate, Beach nourishment, Coarse-clastic beach, Coastal management, Marina di Pisa, Pebble",
author = "Duccio Bertoni and Giovanni Sarti and Edoardo Grottoli and Paolo Ciavola and Alessandro Pozzebon and Gabor Domokos and T{\'i}mea Nov{\'a}k-Szab{\'o}",
year = "2016",
month = "11",
day = "1",
doi = "10.1016/j.margeo.2016.09.010",
language = "English",
volume = "381",
pages = "175--180",
journal = "Marine Geology",
issn = "0025-3227",
publisher = "Elsevier",

}

Bertoni, D, Sarti, G, Grottoli, E, Ciavola, P, Pozzebon, A, Domokos, G & Novák-Szabó, T 2016, 'Impressive abrasion rates of marked pebbles on a coarse-clastic beach within a 13-month timespan', Marine Geology, vol. 381, pp. 175-180. https://doi.org/10.1016/j.margeo.2016.09.010

Impressive abrasion rates of marked pebbles on a coarse-clastic beach within a 13-month timespan. / Bertoni, Duccio; Sarti, Giovanni; Grottoli, Edoardo; Ciavola, Paolo; Pozzebon, Alessandro; Domokos, Gabor; Novák-Szabó, Tímea.

In: Marine Geology, Vol. 381, 01.11.2016, p. 175-180.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Impressive abrasion rates of marked pebbles on a coarse-clastic beach within a 13-month timespan

AU - Bertoni, Duccio

AU - Sarti, Giovanni

AU - Grottoli, Edoardo

AU - Ciavola, Paolo

AU - Pozzebon, Alessandro

AU - Domokos, Gabor

AU - Novák-Szabó, Tímea

PY - 2016/11/1

Y1 - 2016/11/1

N2 - In this paper the abrasion rate on a coarse-clastic beach was evaluated by calculating the volume loss recorded on indigenous pebbles within a 13-month timespan. The experiment was carried out at Marina di Pisa (Italy) on an artificial beach that was built to counteract the erosion processes affecting this sector of the coast. A total of 240 marble pebbles (120 rounded and 120 angular) were marked using the RFID technology and injected on the beach. The volume loss measured after consecutive recovery campaigns was progressively increasing, reaching the maximum value after 13 months (61% overall). The average volume loss is consistent between rounded and angular pebbles at any time (59.3% and 64.2% after 13 months respectively), meaning that the roundness is not a primary control factor on abrasion rate. The pebbles that did not reach such abrasion rates after 8 and 10 months (volume loss less than 20%) were found at heights equal or greater than 2 m above mean sea level, on the crest of the storm berm that formed during the strongest storms. This implies that the highest wearing is achieved in the lower portion of the backshore, which is also the area that underwent major topographic modifications. Here, sea water action might also exert chemical influence on the pebbles, adding to the mechanical abrasion. The main result of this research, indicating an impressive volume loss on beach pebbles in a short timespan, could be of key importance for coastal managers. The optimization of coarse sediment beach nourishments is also relevant, taking into right consideration that the volume loss due to sediment abrasion might exceed 50% of the original fill volume just after 1 year in the most dynamic portion of the beach.

AB - In this paper the abrasion rate on a coarse-clastic beach was evaluated by calculating the volume loss recorded on indigenous pebbles within a 13-month timespan. The experiment was carried out at Marina di Pisa (Italy) on an artificial beach that was built to counteract the erosion processes affecting this sector of the coast. A total of 240 marble pebbles (120 rounded and 120 angular) were marked using the RFID technology and injected on the beach. The volume loss measured after consecutive recovery campaigns was progressively increasing, reaching the maximum value after 13 months (61% overall). The average volume loss is consistent between rounded and angular pebbles at any time (59.3% and 64.2% after 13 months respectively), meaning that the roundness is not a primary control factor on abrasion rate. The pebbles that did not reach such abrasion rates after 8 and 10 months (volume loss less than 20%) were found at heights equal or greater than 2 m above mean sea level, on the crest of the storm berm that formed during the strongest storms. This implies that the highest wearing is achieved in the lower portion of the backshore, which is also the area that underwent major topographic modifications. Here, sea water action might also exert chemical influence on the pebbles, adding to the mechanical abrasion. The main result of this research, indicating an impressive volume loss on beach pebbles in a short timespan, could be of key importance for coastal managers. The optimization of coarse sediment beach nourishments is also relevant, taking into right consideration that the volume loss due to sediment abrasion might exceed 50% of the original fill volume just after 1 year in the most dynamic portion of the beach.

KW - Abrasion rate

KW - Beach nourishment

KW - Coarse-clastic beach

KW - Coastal management

KW - Marina di Pisa

KW - Pebble

UR - http://www.scopus.com/inward/record.url?scp=84988960144&partnerID=8YFLogxK

U2 - 10.1016/j.margeo.2016.09.010

DO - 10.1016/j.margeo.2016.09.010

M3 - Article

VL - 381

SP - 175

EP - 180

JO - Marine Geology

T2 - Marine Geology

JF - Marine Geology

SN - 0025-3227

ER -