Impact of Silicon Nanocrystal Oxidation on the Nonmetallic Growth of Carbon Nanotubes

Conor Rocks, Somak Mitra, Manuel Macias-Montero, P Maguire, Vladimir Svrcek, Igor Levchenko, Kostya Ostrikov, D Mariotti

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)


Carbon nanotube (CNT) growth has been demonstrated recently using a number of nonmetallic semiconducting and metal oxide nanoparticles, opening up pathways for direct CNT synthesis from a number of more desirable templates without the need for metallic catalysts. However, CNT growth mechanisms using these nonconventional catalysts has been shown to largely differ and reamins a challenging synthesis route. In this contribution we show CNT growth from partially oxidized silicon nanocrystals (Si NCs) that exhibit quantum confinement effects using a microwave plasma enhanced chemical vapor deposition (PECVD) method. On the basis of solvent and a postsynthesis frgamentation process, we show that oxidation of our Si NCs can be easily controlled. We determine experimentally and explain with theoretical simulations that the Si NCs morphology together with a necessary shell oxide of �1 nm is vital to allow for the nonmetallic growth of CNTs. On the basis of chemical analysis post-CNT-growth, we give insight into possible mechanisms for CNT nucleation and growth from our partially oxidized Si NCs. This contribution is of significant importance to the improvement of nonmetallic catalysts for CNT growth and the development of Si NC/CNT interfaces.
Original languageEnglish
Pages (from-to)19012-19023
JournalACS Applied Materials & Interfaces
Issue number29
Publication statusPublished (in print/issue) - 30 Jun 2016


  • silicon nanocrystals
  • carbon nanotubes
  • nonmetallic catalyst
  • plasma
  • nanocomposite


Dive into the research topics of 'Impact of Silicon Nanocrystal Oxidation on the Nonmetallic Growth of Carbon Nanotubes'. Together they form a unique fingerprint.

Cite this