ICE SHEET SOURCES OF SEA LEVEL RISE AND FRESHWATER DISCHARGE DURING THE LAST DEGLACIATION

Anders E. Carlson, Peter U Clark

    Research output: Contribution to journalArticle

    118 Citations (Scopus)

    Abstract

    We review and synthesize the geologic record that constrains the sources of sea level rise and freshwater discharge to the global oceans associated with retreat of ice sheets during the last deglaciation. The Last Glacial Maximum (∼26–19 ka) was terminated by a rapid 5–10 m sea level rise at 19.0–19.5 ka, sourced largely from Northern Hemisphere ice sheet retreat in response to high northern latitude insolation forcing. Sea level rise of 8–20 m from ∼19 to 14.5 ka can be attributed to continued retreat of the Laurentide and Eurasian Ice Sheets, with an additional freshwater forcing of uncertain amount delivered by Heinrich event 1. The source of the abrupt acceleration in sea level rise at ∼14.6 ka (meltwater pulse 1A, ∼14–15 m) includes contributions of 6.5–10 m from Northern Hemisphere ice sheets, of which 2–7 m represents an excess contribution above that derived from ongoing ice sheet retreat. Widespread retreat of Antarctic ice sheets began at 14.0–15.0 ka, which, together with geophysical modeling of far-field sea level records, suggests an Antarctic contribution to this meltwater pulse as well. The cause of the subsequent Younger Dryas cold event can be attributed to eastward freshwater runoff from the Lake Agassiz basin to the St. Lawrence estuary that agrees with existing Lake Agassiz outlet radiocarbon dates. Much of the early Holocene sea level rise can be explained by Laurentide and Scandinavian Ice Sheet retreat, with collapse of Laurentide ice over Hudson Bay and drainage of Lake Agassiz basin runoff at ∼8.4–8.2 ka to the Labrador Sea causing the 8.2 ka event.
    LanguageEnglish
    PagesRG4007
    JournalReviews of Geophysics
    Volume50
    DOIs
    Publication statusPublished - Dec 2012

    Fingerprint

    last deglaciation
    ice sheet
    meltwater
    Northern Hemisphere
    lake
    Scandinavian Ice Sheet
    runoff
    Heinrich event
    Laurentide Ice Sheet
    Younger Dryas
    global ocean
    insolation
    Last Glacial Maximum
    basin
    sea level rise
    estuary
    Holocene
    sea level
    drainage
    ice

    Cite this

    @article{3857e8878fbf4c00b9c05a4c7a103947,
    title = "ICE SHEET SOURCES OF SEA LEVEL RISE AND FRESHWATER DISCHARGE DURING THE LAST DEGLACIATION",
    abstract = "We review and synthesize the geologic record that constrains the sources of sea level rise and freshwater discharge to the global oceans associated with retreat of ice sheets during the last deglaciation. The Last Glacial Maximum (∼26–19 ka) was terminated by a rapid 5–10 m sea level rise at 19.0–19.5 ka, sourced largely from Northern Hemisphere ice sheet retreat in response to high northern latitude insolation forcing. Sea level rise of 8–20 m from ∼19 to 14.5 ka can be attributed to continued retreat of the Laurentide and Eurasian Ice Sheets, with an additional freshwater forcing of uncertain amount delivered by Heinrich event 1. The source of the abrupt acceleration in sea level rise at ∼14.6 ka (meltwater pulse 1A, ∼14–15 m) includes contributions of 6.5–10 m from Northern Hemisphere ice sheets, of which 2–7 m represents an excess contribution above that derived from ongoing ice sheet retreat. Widespread retreat of Antarctic ice sheets began at 14.0–15.0 ka, which, together with geophysical modeling of far-field sea level records, suggests an Antarctic contribution to this meltwater pulse as well. The cause of the subsequent Younger Dryas cold event can be attributed to eastward freshwater runoff from the Lake Agassiz basin to the St. Lawrence estuary that agrees with existing Lake Agassiz outlet radiocarbon dates. Much of the early Holocene sea level rise can be explained by Laurentide and Scandinavian Ice Sheet retreat, with collapse of Laurentide ice over Hudson Bay and drainage of Lake Agassiz basin runoff at ∼8.4–8.2 ka to the Labrador Sea causing the 8.2 ka event.",
    author = "Carlson, {Anders E.} and Clark, {Peter U}",
    year = "2012",
    month = "12",
    doi = "10.1029/2011RG000371",
    language = "English",
    volume = "50",
    pages = "RG4007",
    journal = "Reviews of Geophysics",
    issn = "8755-1209",

    }

    ICE SHEET SOURCES OF SEA LEVEL RISE AND FRESHWATER DISCHARGE DURING THE LAST DEGLACIATION. / Carlson, Anders E.; Clark, Peter U.

    In: Reviews of Geophysics, Vol. 50, 12.2012, p. RG4007.

    Research output: Contribution to journalArticle

    TY - JOUR

    T1 - ICE SHEET SOURCES OF SEA LEVEL RISE AND FRESHWATER DISCHARGE DURING THE LAST DEGLACIATION

    AU - Carlson, Anders E.

    AU - Clark, Peter U

    PY - 2012/12

    Y1 - 2012/12

    N2 - We review and synthesize the geologic record that constrains the sources of sea level rise and freshwater discharge to the global oceans associated with retreat of ice sheets during the last deglaciation. The Last Glacial Maximum (∼26–19 ka) was terminated by a rapid 5–10 m sea level rise at 19.0–19.5 ka, sourced largely from Northern Hemisphere ice sheet retreat in response to high northern latitude insolation forcing. Sea level rise of 8–20 m from ∼19 to 14.5 ka can be attributed to continued retreat of the Laurentide and Eurasian Ice Sheets, with an additional freshwater forcing of uncertain amount delivered by Heinrich event 1. The source of the abrupt acceleration in sea level rise at ∼14.6 ka (meltwater pulse 1A, ∼14–15 m) includes contributions of 6.5–10 m from Northern Hemisphere ice sheets, of which 2–7 m represents an excess contribution above that derived from ongoing ice sheet retreat. Widespread retreat of Antarctic ice sheets began at 14.0–15.0 ka, which, together with geophysical modeling of far-field sea level records, suggests an Antarctic contribution to this meltwater pulse as well. The cause of the subsequent Younger Dryas cold event can be attributed to eastward freshwater runoff from the Lake Agassiz basin to the St. Lawrence estuary that agrees with existing Lake Agassiz outlet radiocarbon dates. Much of the early Holocene sea level rise can be explained by Laurentide and Scandinavian Ice Sheet retreat, with collapse of Laurentide ice over Hudson Bay and drainage of Lake Agassiz basin runoff at ∼8.4–8.2 ka to the Labrador Sea causing the 8.2 ka event.

    AB - We review and synthesize the geologic record that constrains the sources of sea level rise and freshwater discharge to the global oceans associated with retreat of ice sheets during the last deglaciation. The Last Glacial Maximum (∼26–19 ka) was terminated by a rapid 5–10 m sea level rise at 19.0–19.5 ka, sourced largely from Northern Hemisphere ice sheet retreat in response to high northern latitude insolation forcing. Sea level rise of 8–20 m from ∼19 to 14.5 ka can be attributed to continued retreat of the Laurentide and Eurasian Ice Sheets, with an additional freshwater forcing of uncertain amount delivered by Heinrich event 1. The source of the abrupt acceleration in sea level rise at ∼14.6 ka (meltwater pulse 1A, ∼14–15 m) includes contributions of 6.5–10 m from Northern Hemisphere ice sheets, of which 2–7 m represents an excess contribution above that derived from ongoing ice sheet retreat. Widespread retreat of Antarctic ice sheets began at 14.0–15.0 ka, which, together with geophysical modeling of far-field sea level records, suggests an Antarctic contribution to this meltwater pulse as well. The cause of the subsequent Younger Dryas cold event can be attributed to eastward freshwater runoff from the Lake Agassiz basin to the St. Lawrence estuary that agrees with existing Lake Agassiz outlet radiocarbon dates. Much of the early Holocene sea level rise can be explained by Laurentide and Scandinavian Ice Sheet retreat, with collapse of Laurentide ice over Hudson Bay and drainage of Lake Agassiz basin runoff at ∼8.4–8.2 ka to the Labrador Sea causing the 8.2 ka event.

    U2 - 10.1029/2011RG000371

    DO - 10.1029/2011RG000371

    M3 - Article

    VL - 50

    SP - RG4007

    JO - Reviews of Geophysics

    T2 - Reviews of Geophysics

    JF - Reviews of Geophysics

    SN - 8755-1209

    ER -