Hydrogen safety engineering framework and elementary design safety tools

Jean-Bernard Saffers, Vladimir Molkov

Research output: Contribution to journalArticle

15 Citations (Scopus)

Abstract

The viability and public acceptance of Hydrogen and Fuel Cell (H2FC) systems and infrastructure depends on their robust safety engineering design and on education and training of the workforce, regulators and other stakeholders in the state-of-the-art in the field. This can be provided only through building up and maturity of the Hydrogen Safety Engineering (H2SE) profession. H2SE is defined as an application of scientific and engineering principles to the protection of life, property and environment from adverse effects of incidents/accidents involving hydrogen. This paper describes a design framework and overviews a structure and contents of elementary design safety tool for carrying out H2SE. The approach is similar to British Standard BS7974 for application of fire safety engineering to the design of buildings and has been expanded to reflect on specific hydrogen safety related phenomena, including but not limited to high pressure under-expanded leaks and dispersion, spontaneous ignition of sudden hydrogen releases to air, deflagrations and detonations, etc. The H2SE process includes three main steps. Firstly, a qualitative design review is undertaken by a team that can include owner, hydrogen safety engineer, architect, representatives of authorities having jurisdiction, e.g. fire services, and other stakeholders. The team defines accident scenarios, suggests trial safety designs, and formulates acceptance criteria. Secondly, a quantitative safety analysis of selected scenarios and trial designs is carried out by qualified hydrogen safety engineer(s) using the state-of-the-art knowledge in hydrogen safety science and engineering, and validated models and tools. Finally, the performance of trial safety designs of H2FC system and/or infrastructure is assessed against acceptance criteria predefined by the team. This performance-based methodology offers the flexibility to assess trial safety designs using separately or simultaneously three approaches: deterministic, comparative or probabilistic.
LanguageEnglish
Pages6268-6285
JournalInternational Journal of Hydrogen Energy
Volume39
Issue number11
DOIs
Publication statusPublished - 4 Apr 2014

Fingerprint

Safety engineering
safety
engineering
Hydrogen
hydrogen
acceptability
Accidents
Fires
accidents
engineers
Engineers
education
Detonation
deflagration
Ignition
Fuel cells
regulators
detonation
Education
viability

Cite this

Saffers, Jean-Bernard ; Molkov, Vladimir. / Hydrogen safety engineering framework and elementary design safety tools. 2014 ; Vol. 39, No. 11. pp. 6268-6285.
@article{dfda8b268d644c2480778ac11bed9c54,
title = "Hydrogen safety engineering framework and elementary design safety tools",
abstract = "The viability and public acceptance of Hydrogen and Fuel Cell (H2FC) systems and infrastructure depends on their robust safety engineering design and on education and training of the workforce, regulators and other stakeholders in the state-of-the-art in the field. This can be provided only through building up and maturity of the Hydrogen Safety Engineering (H2SE) profession. H2SE is defined as an application of scientific and engineering principles to the protection of life, property and environment from adverse effects of incidents/accidents involving hydrogen. This paper describes a design framework and overviews a structure and contents of elementary design safety tool for carrying out H2SE. The approach is similar to British Standard BS7974 for application of fire safety engineering to the design of buildings and has been expanded to reflect on specific hydrogen safety related phenomena, including but not limited to high pressure under-expanded leaks and dispersion, spontaneous ignition of sudden hydrogen releases to air, deflagrations and detonations, etc. The H2SE process includes three main steps. Firstly, a qualitative design review is undertaken by a team that can include owner, hydrogen safety engineer, architect, representatives of authorities having jurisdiction, e.g. fire services, and other stakeholders. The team defines accident scenarios, suggests trial safety designs, and formulates acceptance criteria. Secondly, a quantitative safety analysis of selected scenarios and trial designs is carried out by qualified hydrogen safety engineer(s) using the state-of-the-art knowledge in hydrogen safety science and engineering, and validated models and tools. Finally, the performance of trial safety designs of H2FC system and/or infrastructure is assessed against acceptance criteria predefined by the team. This performance-based methodology offers the flexibility to assess trial safety designs using separately or simultaneously three approaches: deterministic, comparative or probabilistic.",
author = "Jean-Bernard Saffers and Vladimir Molkov",
year = "2014",
month = "4",
day = "4",
doi = "10.1016/j.ijhydene.2013.06.060",
language = "English",
volume = "39",
pages = "6268--6285",
number = "11",

}

Hydrogen safety engineering framework and elementary design safety tools. / Saffers, Jean-Bernard; Molkov, Vladimir.

Vol. 39, No. 11, 04.04.2014, p. 6268-6285.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Hydrogen safety engineering framework and elementary design safety tools

AU - Saffers, Jean-Bernard

AU - Molkov, Vladimir

PY - 2014/4/4

Y1 - 2014/4/4

N2 - The viability and public acceptance of Hydrogen and Fuel Cell (H2FC) systems and infrastructure depends on their robust safety engineering design and on education and training of the workforce, regulators and other stakeholders in the state-of-the-art in the field. This can be provided only through building up and maturity of the Hydrogen Safety Engineering (H2SE) profession. H2SE is defined as an application of scientific and engineering principles to the protection of life, property and environment from adverse effects of incidents/accidents involving hydrogen. This paper describes a design framework and overviews a structure and contents of elementary design safety tool for carrying out H2SE. The approach is similar to British Standard BS7974 for application of fire safety engineering to the design of buildings and has been expanded to reflect on specific hydrogen safety related phenomena, including but not limited to high pressure under-expanded leaks and dispersion, spontaneous ignition of sudden hydrogen releases to air, deflagrations and detonations, etc. The H2SE process includes three main steps. Firstly, a qualitative design review is undertaken by a team that can include owner, hydrogen safety engineer, architect, representatives of authorities having jurisdiction, e.g. fire services, and other stakeholders. The team defines accident scenarios, suggests trial safety designs, and formulates acceptance criteria. Secondly, a quantitative safety analysis of selected scenarios and trial designs is carried out by qualified hydrogen safety engineer(s) using the state-of-the-art knowledge in hydrogen safety science and engineering, and validated models and tools. Finally, the performance of trial safety designs of H2FC system and/or infrastructure is assessed against acceptance criteria predefined by the team. This performance-based methodology offers the flexibility to assess trial safety designs using separately or simultaneously three approaches: deterministic, comparative or probabilistic.

AB - The viability and public acceptance of Hydrogen and Fuel Cell (H2FC) systems and infrastructure depends on their robust safety engineering design and on education and training of the workforce, regulators and other stakeholders in the state-of-the-art in the field. This can be provided only through building up and maturity of the Hydrogen Safety Engineering (H2SE) profession. H2SE is defined as an application of scientific and engineering principles to the protection of life, property and environment from adverse effects of incidents/accidents involving hydrogen. This paper describes a design framework and overviews a structure and contents of elementary design safety tool for carrying out H2SE. The approach is similar to British Standard BS7974 for application of fire safety engineering to the design of buildings and has been expanded to reflect on specific hydrogen safety related phenomena, including but not limited to high pressure under-expanded leaks and dispersion, spontaneous ignition of sudden hydrogen releases to air, deflagrations and detonations, etc. The H2SE process includes three main steps. Firstly, a qualitative design review is undertaken by a team that can include owner, hydrogen safety engineer, architect, representatives of authorities having jurisdiction, e.g. fire services, and other stakeholders. The team defines accident scenarios, suggests trial safety designs, and formulates acceptance criteria. Secondly, a quantitative safety analysis of selected scenarios and trial designs is carried out by qualified hydrogen safety engineer(s) using the state-of-the-art knowledge in hydrogen safety science and engineering, and validated models and tools. Finally, the performance of trial safety designs of H2FC system and/or infrastructure is assessed against acceptance criteria predefined by the team. This performance-based methodology offers the flexibility to assess trial safety designs using separately or simultaneously three approaches: deterministic, comparative or probabilistic.

U2 - 10.1016/j.ijhydene.2013.06.060

DO - 10.1016/j.ijhydene.2013.06.060

M3 - Article

VL - 39

SP - 6268

EP - 6285

IS - 11

ER -