House price estimation using an eigenvector spatial filtering approach

Research output: Contribution to journalArticle

Abstract

Purpose: Numerous geo-statistical methods have been developed to analyse the spatial dimension and composition of house prices. Despite these advances, spatial filtering remains an under-researched approach within house price studies. This paper aims to examine the spatial distribution of house prices using an eigenvector spatial filtering (ESF) procedure, to analyse the local variation and spatial heterogeneity. Design/methodology/approach: Using 2,664 sale transactions over the one year period Q3 2017 to Q3 2018, an eigenvector spatial filtering approach is applied to evaluate spatial patterns within the Belfast housing market. This method consists of using geographical coordinates to specify eigenvectors across geographic distance to determine a set of spatial filters. These convey spatial structures representative of different spatial scales and units. The filters are incorporated as predictors into regression analyses to alleviate spatial autocorrelation. This approach is intuitive, given that detection of autocorrelation in specific filters and within the regression residuals can be markers for exclusion or inclusion criteria. Findings: The findings show both robust and effective estimator consistency and limited spatial dependency – culminating in accurately specified hedonic pricing models. The findings show that the spatial component alone explains 14.6 per cent of the variation in property value, whereas 77.6 per cent of the variation could be attributed to an interaction between the structural characteristics and the local market geography expressed by the filters. This methodological step reduced short-scale spatial dependency and residual autocorrelation resulting in increased model stability and reduced misspecification error. Originality/value: Eigenvector-based spatial filtering is a less known but suitable statistical protocol that can be used to analyse house price patterns taking into account spatial autocorrelation at varying (different) spatial scales. This approach arguably provides a more insightful analysis of house prices by removing spatial autocorrelation both objectively and subjectively to produce reliable, yet understandable, regression models, which do not suffer from traditional challenges of serial dependence or spatial mis-specification. This approach offers property researchers and policymakers an intuitive but comprehensible approach for producing accurate price estimation models, which can be readily interpreted.

LanguageEnglish
JournalInternational Journal of Housing Markets and Analysis
Early online date14 Nov 2019
DOIs
Publication statusE-pub ahead of print - 14 Nov 2019

Fingerprint

House prices
Filter
Spatial scale
Spatial autocorrelation
Autocorrelation
Misspecification
Local markets
Geography
Interaction
Statistical methods
Housing market
Estimator
Regression model
Politicians
Predictors
Inclusion
Property values
Hedonic pricing
Spatial distribution
Spatial structure

Keywords

  • Eigenvector spatial filtering,
  • Spatially varying coefficients
  • Hedonic price analysis
  • house prices
  • spatial dependency
  • spatial autocorrelation
  • Eigenvector spatial filtering
  • Spatial dependency
  • House prices
  • Spatial autocorrelation

Cite this

@article{eee5e3006b2a4ab6844d9990f084f44c,
title = "House price estimation using an eigenvector spatial filtering approach",
abstract = "Purpose: Numerous geo-statistical methods have been developed to analyse the spatial dimension and composition of house prices. Despite these advances, spatial filtering remains an under-researched approach within house price studies. This paper aims to examine the spatial distribution of house prices using an eigenvector spatial filtering (ESF) procedure, to analyse the local variation and spatial heterogeneity. Design/methodology/approach: Using 2,664 sale transactions over the one year period Q3 2017 to Q3 2018, an eigenvector spatial filtering approach is applied to evaluate spatial patterns within the Belfast housing market. This method consists of using geographical coordinates to specify eigenvectors across geographic distance to determine a set of spatial filters. These convey spatial structures representative of different spatial scales and units. The filters are incorporated as predictors into regression analyses to alleviate spatial autocorrelation. This approach is intuitive, given that detection of autocorrelation in specific filters and within the regression residuals can be markers for exclusion or inclusion criteria. Findings: The findings show both robust and effective estimator consistency and limited spatial dependency – culminating in accurately specified hedonic pricing models. The findings show that the spatial component alone explains 14.6 per cent of the variation in property value, whereas 77.6 per cent of the variation could be attributed to an interaction between the structural characteristics and the local market geography expressed by the filters. This methodological step reduced short-scale spatial dependency and residual autocorrelation resulting in increased model stability and reduced misspecification error. Originality/value: Eigenvector-based spatial filtering is a less known but suitable statistical protocol that can be used to analyse house price patterns taking into account spatial autocorrelation at varying (different) spatial scales. This approach arguably provides a more insightful analysis of house prices by removing spatial autocorrelation both objectively and subjectively to produce reliable, yet understandable, regression models, which do not suffer from traditional challenges of serial dependence or spatial mis-specification. This approach offers property researchers and policymakers an intuitive but comprehensible approach for producing accurate price estimation models, which can be readily interpreted.",
keywords = "Eigenvector spatial filtering,, Spatially varying coefficients, Hedonic price analysis, house prices, spatial dependency, spatial autocorrelation, Eigenvector spatial filtering, Spatial dependency, House prices, Spatial autocorrelation",
author = "Michael McCord and John McCord and Peadar Davis and Martin Haran and Paul Bidanset",
year = "2019",
month = "11",
day = "14",
doi = "10.1108/IJHMA-09-2019-0097",
language = "English",
journal = "International Journal of Housing Markets and Analysis",
issn = "1753-8270",

}

TY - JOUR

T1 - House price estimation using an eigenvector spatial filtering approach

AU - McCord, Michael

AU - McCord, John

AU - Davis, Peadar

AU - Haran, Martin

AU - Bidanset, Paul

PY - 2019/11/14

Y1 - 2019/11/14

N2 - Purpose: Numerous geo-statistical methods have been developed to analyse the spatial dimension and composition of house prices. Despite these advances, spatial filtering remains an under-researched approach within house price studies. This paper aims to examine the spatial distribution of house prices using an eigenvector spatial filtering (ESF) procedure, to analyse the local variation and spatial heterogeneity. Design/methodology/approach: Using 2,664 sale transactions over the one year period Q3 2017 to Q3 2018, an eigenvector spatial filtering approach is applied to evaluate spatial patterns within the Belfast housing market. This method consists of using geographical coordinates to specify eigenvectors across geographic distance to determine a set of spatial filters. These convey spatial structures representative of different spatial scales and units. The filters are incorporated as predictors into regression analyses to alleviate spatial autocorrelation. This approach is intuitive, given that detection of autocorrelation in specific filters and within the regression residuals can be markers for exclusion or inclusion criteria. Findings: The findings show both robust and effective estimator consistency and limited spatial dependency – culminating in accurately specified hedonic pricing models. The findings show that the spatial component alone explains 14.6 per cent of the variation in property value, whereas 77.6 per cent of the variation could be attributed to an interaction between the structural characteristics and the local market geography expressed by the filters. This methodological step reduced short-scale spatial dependency and residual autocorrelation resulting in increased model stability and reduced misspecification error. Originality/value: Eigenvector-based spatial filtering is a less known but suitable statistical protocol that can be used to analyse house price patterns taking into account spatial autocorrelation at varying (different) spatial scales. This approach arguably provides a more insightful analysis of house prices by removing spatial autocorrelation both objectively and subjectively to produce reliable, yet understandable, regression models, which do not suffer from traditional challenges of serial dependence or spatial mis-specification. This approach offers property researchers and policymakers an intuitive but comprehensible approach for producing accurate price estimation models, which can be readily interpreted.

AB - Purpose: Numerous geo-statistical methods have been developed to analyse the spatial dimension and composition of house prices. Despite these advances, spatial filtering remains an under-researched approach within house price studies. This paper aims to examine the spatial distribution of house prices using an eigenvector spatial filtering (ESF) procedure, to analyse the local variation and spatial heterogeneity. Design/methodology/approach: Using 2,664 sale transactions over the one year period Q3 2017 to Q3 2018, an eigenvector spatial filtering approach is applied to evaluate spatial patterns within the Belfast housing market. This method consists of using geographical coordinates to specify eigenvectors across geographic distance to determine a set of spatial filters. These convey spatial structures representative of different spatial scales and units. The filters are incorporated as predictors into regression analyses to alleviate spatial autocorrelation. This approach is intuitive, given that detection of autocorrelation in specific filters and within the regression residuals can be markers for exclusion or inclusion criteria. Findings: The findings show both robust and effective estimator consistency and limited spatial dependency – culminating in accurately specified hedonic pricing models. The findings show that the spatial component alone explains 14.6 per cent of the variation in property value, whereas 77.6 per cent of the variation could be attributed to an interaction between the structural characteristics and the local market geography expressed by the filters. This methodological step reduced short-scale spatial dependency and residual autocorrelation resulting in increased model stability and reduced misspecification error. Originality/value: Eigenvector-based spatial filtering is a less known but suitable statistical protocol that can be used to analyse house price patterns taking into account spatial autocorrelation at varying (different) spatial scales. This approach arguably provides a more insightful analysis of house prices by removing spatial autocorrelation both objectively and subjectively to produce reliable, yet understandable, regression models, which do not suffer from traditional challenges of serial dependence or spatial mis-specification. This approach offers property researchers and policymakers an intuitive but comprehensible approach for producing accurate price estimation models, which can be readily interpreted.

KW - Eigenvector spatial filtering,

KW - Spatially varying coefficients

KW - Hedonic price analysis

KW - house prices

KW - spatial dependency

KW - spatial autocorrelation

KW - Eigenvector spatial filtering

KW - Spatial dependency

KW - House prices

KW - Spatial autocorrelation

UR - http://www.scopus.com/inward/record.url?scp=85075952826&partnerID=8YFLogxK

U2 - 10.1108/IJHMA-09-2019-0097

DO - 10.1108/IJHMA-09-2019-0097

M3 - Article

JO - International Journal of Housing Markets and Analysis

T2 - International Journal of Housing Markets and Analysis

JF - International Journal of Housing Markets and Analysis

SN - 1753-8270

ER -