High selectivity and sensitivity through nanoparticle sensors for cleanroom CO 2 detection

Manjunatha Channegowda, Arpit Verma, Igra Arabia, Ujwal S Meda, Ishpal Rawal, Sarevesh Rustagi, Bal Chandra Yadav, Patrick Dunlop, Nikhil Bhalla, Vishal Chaudhary

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)
22 Downloads (Pure)

Abstract

Clean room facilities are becoming more popular in both academic and industry settings, including low-and middle-income countries. This has led to an increased demand for cost-effective gas sensors to monitor air quality. Here we have developed a gas sensor using CoNiO2 nanoparticles through combustion method. The sensitivity and selectivity of the sensor towards CO2 were influenced by the structure of the nanoparticles, which were affected by the reducing agent (biofuels) used during synthesis. Among all reducing agents, urea found to yield highly crystalline and uniformly distributed CoNiO2 nanoparticles, which when developed into sensors showed high sensitivity and selectivity for the detection of CO2 gas in the presence of common interfering volatile organic compounds observed in cleanroom facilities including ammonia, formaldehyde, acetone, toluene, ethanol, isopropanol and methanol. In addition, the urea-mediated nanoparticle-based sensors exhibited room temperature operation, high stability, prompt response and recovery rates, and excellent reproducibility. Consequently, the synthesis approach to nanoparticle-based, energy efficient and affordable sensors represent a benchmark for CO2 sensing in cleanroom settings.
Original languageEnglish
Article number315501
JournalNanotechnology
Volume35
Issue number31
Early online date17 Apr 2024
DOIs
Publication statusPublished online - 17 Apr 2024

Bibliographical note

Publisher Copyright:
© 2024 The Author(s). Published by IOP Publishing Ltd.

Keywords

  • carbon-dioxide
  • gas-sensors
  • clearnroom
  • nanoparticles

Fingerprint

Dive into the research topics of 'High selectivity and sensitivity through nanoparticle sensors for cleanroom CO 2 detection'. Together they form a unique fingerprint.

Cite this