TY - GEN
T1 - Harnessing novel bacterial peptides for antimicrobial activity in the gut microbiome
AU - Sterling, Amy
AU - Daniels, Victoria
AU - Conwell, Michael
AU - Ternan, Nigel G
AU - Snelling, W
AU - Naughton, Patrick
AU - Dooley, J
PY - 2019/4/8
Y1 - 2019/4/8
N2 - The Enterococci are a resilient collection of species, found in the human intestine, river sediment and even certain cheeses. Human infection by this genus is dominated by E. faecalis and E. faecium. Vancomycin resistant enterococci (VRE) are associated with higher mortality rates over non-VRE strains. Enterococci can utilise the highly efficient pheromone responsive plasmid (PRP) system to transfer plasmid DNA between cells. Plasmid containing donor cells respond to small peptide pheromones (7–8 amino acids) and transfer plasmid DNA to pheromone-producing plasmid-free recipient cells. PRP can encode antibiotic resistance (including vancomycin) and virulence enhancing factors. Investigation into the PRP system between donor and recipient E. faecalis environmental isolates has indicated a 40 % decrease in PRP transfer in colder environments. Additionally, PRP efficiencies under other conditions, including in presence of synthetic pheromone peptides, have been calculated. Future assays will utilise pheromone imitative fluorescently labelled synthetic peptides to visualise the pheromone binding receptor (PrgZ) on the E. faecalis donor cell membrane. Later experiments will focus on varying the synthetic pheromone amino acid composition so to interfere with the PRP system machinery, with the aim of reducing PRP transfer efficiency or preventing PRP transfer completely
AB - The Enterococci are a resilient collection of species, found in the human intestine, river sediment and even certain cheeses. Human infection by this genus is dominated by E. faecalis and E. faecium. Vancomycin resistant enterococci (VRE) are associated with higher mortality rates over non-VRE strains. Enterococci can utilise the highly efficient pheromone responsive plasmid (PRP) system to transfer plasmid DNA between cells. Plasmid containing donor cells respond to small peptide pheromones (7–8 amino acids) and transfer plasmid DNA to pheromone-producing plasmid-free recipient cells. PRP can encode antibiotic resistance (including vancomycin) and virulence enhancing factors. Investigation into the PRP system between donor and recipient E. faecalis environmental isolates has indicated a 40 % decrease in PRP transfer in colder environments. Additionally, PRP efficiencies under other conditions, including in presence of synthetic pheromone peptides, have been calculated. Future assays will utilise pheromone imitative fluorescently labelled synthetic peptides to visualise the pheromone binding receptor (PrgZ) on the E. faecalis donor cell membrane. Later experiments will focus on varying the synthetic pheromone amino acid composition so to interfere with the PRP system machinery, with the aim of reducing PRP transfer efficiency or preventing PRP transfer completely
U2 - 10.1099/acmi.ac2019.po0256
DO - 10.1099/acmi.ac2019.po0256
M3 - Conference contribution
VL - 1
BT - Access Microbiology
ER -