Guiding contact by coupling the taus of gaps

D.N. Lee, A. Georgopoulos, M.J.O. Clarke, Cathy Craig, N.L. Port

Research output: Contribution to journalArticle

57 Citations (Scopus)

Abstract

Animals control contact with surfaces when locomoting, catching prey, etc. This requires sensorily guiding the rate of closure of gaps between effecters such as the hands, feet or jaws and destinations such as a ball, the ground and a prey. Control is generally rapid, reliable and robust, even with small nervous systems: the sensorimotor processes are therefore probably rather simple. We tested a hypothesis, based on general tau theory, that closing two gaps simultaneously, as required in many actions, might be achieved simply by keeping the taus of the gaps coupled in constant ratio. tau of a changing gap is defined as the time-to-closure of the gap at the current closure-rate. General tau theory shows that tau of a gap could, in principle, be directly sensed without needing to sense either the gap size or its rate of closure. In our experiment, subjects moved an effector (computer cursor) to a destination zone indicated on the computer monitor, to stop in the zone just as a moving target cursor reached it. The results indicated the subjects achieved the task by keeping tau of the gap between effector and target coupled to tau of the gap between the effector and the destination zone. Evidence of tau -coupling has also been found, for example, in bats guiding landing using echolocation. Thus, it appears that a sensorimotor process used by different species for coordinating the closure of two or more gaps between effecters and destinations entails constantly sensing the taus of the gaps and moving so as to keep the taus coupled in constant ratio.
LanguageEnglish
Pages151-159
Number of pages9
JournalExperimental Brain Research
Volume139
Issue number2
Publication statusPublished - 1 Jul 2001

Fingerprint

echolocation
nervous system
bat
animal
rate
experiment

Cite this

Lee, D. N., Georgopoulos, A., Clarke, M. J. O., Craig, C., & Port, N. L. (2001). Guiding contact by coupling the taus of gaps. Experimental Brain Research, 139(2), 151-159.
Lee, D.N. ; Georgopoulos, A. ; Clarke, M.J.O. ; Craig, Cathy ; Port, N.L. / Guiding contact by coupling the taus of gaps. In: Experimental Brain Research. 2001 ; Vol. 139, No. 2. pp. 151-159.
@article{4adad714316942b3abb94286d41e3d67,
title = "Guiding contact by coupling the taus of gaps",
abstract = "Animals control contact with surfaces when locomoting, catching prey, etc. This requires sensorily guiding the rate of closure of gaps between effecters such as the hands, feet or jaws and destinations such as a ball, the ground and a prey. Control is generally rapid, reliable and robust, even with small nervous systems: the sensorimotor processes are therefore probably rather simple. We tested a hypothesis, based on general tau theory, that closing two gaps simultaneously, as required in many actions, might be achieved simply by keeping the taus of the gaps coupled in constant ratio. tau of a changing gap is defined as the time-to-closure of the gap at the current closure-rate. General tau theory shows that tau of a gap could, in principle, be directly sensed without needing to sense either the gap size or its rate of closure. In our experiment, subjects moved an effector (computer cursor) to a destination zone indicated on the computer monitor, to stop in the zone just as a moving target cursor reached it. The results indicated the subjects achieved the task by keeping tau of the gap between effector and target coupled to tau of the gap between the effector and the destination zone. Evidence of tau -coupling has also been found, for example, in bats guiding landing using echolocation. Thus, it appears that a sensorimotor process used by different species for coordinating the closure of two or more gaps between effecters and destinations entails constantly sensing the taus of the gaps and moving so as to keep the taus coupled in constant ratio.",
author = "D.N. Lee and A. Georgopoulos and M.J.O. Clarke and Cathy Craig and N.L. Port",
year = "2001",
month = "7",
day = "1",
language = "English",
volume = "139",
pages = "151--159",
journal = "Experimental Brain Research",
issn = "0014-4819",
number = "2",

}

Lee, DN, Georgopoulos, A, Clarke, MJO, Craig, C & Port, NL 2001, 'Guiding contact by coupling the taus of gaps', Experimental Brain Research, vol. 139, no. 2, pp. 151-159.

Guiding contact by coupling the taus of gaps. / Lee, D.N.; Georgopoulos, A.; Clarke, M.J.O.; Craig, Cathy; Port, N.L.

In: Experimental Brain Research, Vol. 139, No. 2, 01.07.2001, p. 151-159.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Guiding contact by coupling the taus of gaps

AU - Lee, D.N.

AU - Georgopoulos, A.

AU - Clarke, M.J.O.

AU - Craig, Cathy

AU - Port, N.L.

PY - 2001/7/1

Y1 - 2001/7/1

N2 - Animals control contact with surfaces when locomoting, catching prey, etc. This requires sensorily guiding the rate of closure of gaps between effecters such as the hands, feet or jaws and destinations such as a ball, the ground and a prey. Control is generally rapid, reliable and robust, even with small nervous systems: the sensorimotor processes are therefore probably rather simple. We tested a hypothesis, based on general tau theory, that closing two gaps simultaneously, as required in many actions, might be achieved simply by keeping the taus of the gaps coupled in constant ratio. tau of a changing gap is defined as the time-to-closure of the gap at the current closure-rate. General tau theory shows that tau of a gap could, in principle, be directly sensed without needing to sense either the gap size or its rate of closure. In our experiment, subjects moved an effector (computer cursor) to a destination zone indicated on the computer monitor, to stop in the zone just as a moving target cursor reached it. The results indicated the subjects achieved the task by keeping tau of the gap between effector and target coupled to tau of the gap between the effector and the destination zone. Evidence of tau -coupling has also been found, for example, in bats guiding landing using echolocation. Thus, it appears that a sensorimotor process used by different species for coordinating the closure of two or more gaps between effecters and destinations entails constantly sensing the taus of the gaps and moving so as to keep the taus coupled in constant ratio.

AB - Animals control contact with surfaces when locomoting, catching prey, etc. This requires sensorily guiding the rate of closure of gaps between effecters such as the hands, feet or jaws and destinations such as a ball, the ground and a prey. Control is generally rapid, reliable and robust, even with small nervous systems: the sensorimotor processes are therefore probably rather simple. We tested a hypothesis, based on general tau theory, that closing two gaps simultaneously, as required in many actions, might be achieved simply by keeping the taus of the gaps coupled in constant ratio. tau of a changing gap is defined as the time-to-closure of the gap at the current closure-rate. General tau theory shows that tau of a gap could, in principle, be directly sensed without needing to sense either the gap size or its rate of closure. In our experiment, subjects moved an effector (computer cursor) to a destination zone indicated on the computer monitor, to stop in the zone just as a moving target cursor reached it. The results indicated the subjects achieved the task by keeping tau of the gap between effector and target coupled to tau of the gap between the effector and the destination zone. Evidence of tau -coupling has also been found, for example, in bats guiding landing using echolocation. Thus, it appears that a sensorimotor process used by different species for coordinating the closure of two or more gaps between effecters and destinations entails constantly sensing the taus of the gaps and moving so as to keep the taus coupled in constant ratio.

M3 - Article

VL - 139

SP - 151

EP - 159

JO - Experimental Brain Research

T2 - Experimental Brain Research

JF - Experimental Brain Research

SN - 0014-4819

IS - 2

ER -

Lee DN, Georgopoulos A, Clarke MJO, Craig C, Port NL. Guiding contact by coupling the taus of gaps. Experimental Brain Research. 2001 Jul 1;139(2):151-159.