Granger Causality on Spatial Manifolds: Applications to Neuroimaging

Pedro A. Valdés-Sosa, Jose Sanchez Bornot, Mayrim Vega-Hernández, Lester Melie-García, Agustin Lage-Castellanos, Erick Canales-Rodríguez

Research output: Chapter in Book/Report/Conference proceedingChapter

20 Citations (Scopus)
LanguageEnglish
Title of host publicationHandbook of Time Series Analysis
Subtitle of host publicationRecent Theoretical Developments and Applications
Pages461-491
Number of pages31
DOIs
Publication statusPublished - 11 Dec 2006

Keywords

  • Applications to neuroimaging
  • Continuous spatial multivariate autoregressive model(sMAR)
  • Estimation via MM algorithm
  • Evaluation of simulated data
  • Granger causality
  • Penalized sMAR
  • Spatial manifolds
  • Testing for spatial Granger causality
  • Time series analysis

Cite this

Valdés-Sosa, P. A., Sanchez Bornot, J., Vega-Hernández, M., Melie-García, L., Lage-Castellanos, A., & Canales-Rodríguez, E. (2006). Granger Causality on Spatial Manifolds: Applications to Neuroimaging. In Handbook of Time Series Analysis: Recent Theoretical Developments and Applications (pp. 461-491) https://doi.org/10.1002/9783527609970.ch18
Valdés-Sosa, Pedro A. ; Sanchez Bornot, Jose ; Vega-Hernández, Mayrim ; Melie-García, Lester ; Lage-Castellanos, Agustin ; Canales-Rodríguez, Erick. / Granger Causality on Spatial Manifolds : Applications to Neuroimaging. Handbook of Time Series Analysis: Recent Theoretical Developments and Applications. 2006. pp. 461-491
@inbook{95c68fc037264ceaa34e1d523ce2dc58,
title = "Granger Causality on Spatial Manifolds: Applications to Neuroimaging",
keywords = "Applications to neuroimaging, Continuous spatial multivariate autoregressive model(sMAR), Estimation via MM algorithm, Evaluation of simulated data, Granger causality, Penalized sMAR, Spatial manifolds, Testing for spatial Granger causality, Time series analysis",
author = "Vald{\'e}s-Sosa, {Pedro A.} and {Sanchez Bornot}, Jose and Mayrim Vega-Hern{\'a}ndez and Lester Melie-Garc{\'i}a and Agustin Lage-Castellanos and Erick Canales-Rodr{\'i}guez",
year = "2006",
month = "12",
day = "11",
doi = "10.1002/9783527609970.ch18",
language = "English",
isbn = "9783527406234",
pages = "461--491",
booktitle = "Handbook of Time Series Analysis",

}

Valdés-Sosa, PA, Sanchez Bornot, J, Vega-Hernández, M, Melie-García, L, Lage-Castellanos, A & Canales-Rodríguez, E 2006, Granger Causality on Spatial Manifolds: Applications to Neuroimaging. in Handbook of Time Series Analysis: Recent Theoretical Developments and Applications. pp. 461-491. https://doi.org/10.1002/9783527609970.ch18

Granger Causality on Spatial Manifolds : Applications to Neuroimaging. / Valdés-Sosa, Pedro A.; Sanchez Bornot, Jose; Vega-Hernández, Mayrim; Melie-García, Lester; Lage-Castellanos, Agustin; Canales-Rodríguez, Erick.

Handbook of Time Series Analysis: Recent Theoretical Developments and Applications. 2006. p. 461-491.

Research output: Chapter in Book/Report/Conference proceedingChapter

TY - CHAP

T1 - Granger Causality on Spatial Manifolds

T2 - Applications to Neuroimaging

AU - Valdés-Sosa, Pedro A.

AU - Sanchez Bornot, Jose

AU - Vega-Hernández, Mayrim

AU - Melie-García, Lester

AU - Lage-Castellanos, Agustin

AU - Canales-Rodríguez, Erick

PY - 2006/12/11

Y1 - 2006/12/11

KW - Applications to neuroimaging

KW - Continuous spatial multivariate autoregressive model(sMAR)

KW - Estimation via MM algorithm

KW - Evaluation of simulated data

KW - Granger causality

KW - Penalized sMAR

KW - Spatial manifolds

KW - Testing for spatial Granger causality

KW - Time series analysis

UR - http://www.scopus.com/inward/record.url?scp=84889295131&partnerID=8YFLogxK

U2 - 10.1002/9783527609970.ch18

DO - 10.1002/9783527609970.ch18

M3 - Chapter

SN - 9783527406234

SP - 461

EP - 491

BT - Handbook of Time Series Analysis

ER -

Valdés-Sosa PA, Sanchez Bornot J, Vega-Hernández M, Melie-García L, Lage-Castellanos A, Canales-Rodríguez E. Granger Causality on Spatial Manifolds: Applications to Neuroimaging. In Handbook of Time Series Analysis: Recent Theoretical Developments and Applications. 2006. p. 461-491 https://doi.org/10.1002/9783527609970.ch18