Fluctuations in intraocular pressure and the potential effect on aberrations of the eye

M. Asejczyk-Widlicka, B. K. Pierscionek

    Research output: Contribution to journalArticle

    21 Citations (Scopus)

    Abstract

    Objective: To investigate the fluctuations in intraocular pressure during the day and to see if these are associated with changes in corneal shape and in the patterns of ocular aberrations. Methods: Intraocular pressure, corneal curvature, refractive error, spherical equivalent and aberrations (defocus (sphere); cylinder (astigmatism); coma, trefoil and third order spherical aberration) were measured in 17 healthy subjects three times during the day. The first measurement was made between 9: 00 and 9: 30, the second at midday (12:30-13:00) and the third in the afternoon (17:00-17:30). Aberrations, corneal shape, refractive error and pupil size (for which correction was made) were measured with an Irx3 Dynamic Wavefront Aberrometer. Intraocular pressures were measured using a non-contact tonometer (Cambridge Instruments Inc.) and calibrated with the Goldmann applanation tonometer. Results: Variations in intraocular pressures were unrelated to age or refractive error. Statistically significant differences in intraocular pressure between morning and midday as well as between midday and afternoon were found. Intraocular pressure variations between midday and afternoon were associated with changes in spherical equivalent, corneal radius of curvature and aberrations (defocus, cylinder, coma, trefoil and spherical aberration) over the same time period. Aberration patterns varied between individuals, and no association was found between two eyes of the same subject. Conclusions: Changes in intraocular pressure have no noticeable effect on image quality. This could be because the eye has a compensating mechanism to correct for any effect of ocular dynamics on corneal shape and refractive status. Such a mechanism may also affect the pattern of aberrations or it may be that aberrations alter in a way that offsets any potentially detrimental effects of intraocular pressure change on the retinal image. Variations in patterns of aberrations and how they may be related to ocular dynamics need to be investigated further before attempts at correction are made.
    LanguageEnglish
    Pages1054-1058
    JournalBRITISH JOURNAL OF OPHTHALMOLOGY
    Volume91
    Issue number8
    DOIs
    Publication statusPublished - Aug 2007

    Fingerprint

    Intraocular Pressure
    Refractive Errors
    Coma
    Astigmatism
    Pupil
    Healthy Volunteers

    Cite this

    Asejczyk-Widlicka, M. ; Pierscionek, B. K. / Fluctuations in intraocular pressure and the potential effect on aberrations of the eye. In: BRITISH JOURNAL OF OPHTHALMOLOGY. 2007 ; Vol. 91, No. 8. pp. 1054-1058.
    @article{2aab3760139f41c79dc9e9c4349736e9,
    title = "Fluctuations in intraocular pressure and the potential effect on aberrations of the eye",
    abstract = "Objective: To investigate the fluctuations in intraocular pressure during the day and to see if these are associated with changes in corneal shape and in the patterns of ocular aberrations. Methods: Intraocular pressure, corneal curvature, refractive error, spherical equivalent and aberrations (defocus (sphere); cylinder (astigmatism); coma, trefoil and third order spherical aberration) were measured in 17 healthy subjects three times during the day. The first measurement was made between 9: 00 and 9: 30, the second at midday (12:30-13:00) and the third in the afternoon (17:00-17:30). Aberrations, corneal shape, refractive error and pupil size (for which correction was made) were measured with an Irx3 Dynamic Wavefront Aberrometer. Intraocular pressures were measured using a non-contact tonometer (Cambridge Instruments Inc.) and calibrated with the Goldmann applanation tonometer. Results: Variations in intraocular pressures were unrelated to age or refractive error. Statistically significant differences in intraocular pressure between morning and midday as well as between midday and afternoon were found. Intraocular pressure variations between midday and afternoon were associated with changes in spherical equivalent, corneal radius of curvature and aberrations (defocus, cylinder, coma, trefoil and spherical aberration) over the same time period. Aberration patterns varied between individuals, and no association was found between two eyes of the same subject. Conclusions: Changes in intraocular pressure have no noticeable effect on image quality. This could be because the eye has a compensating mechanism to correct for any effect of ocular dynamics on corneal shape and refractive status. Such a mechanism may also affect the pattern of aberrations or it may be that aberrations alter in a way that offsets any potentially detrimental effects of intraocular pressure change on the retinal image. Variations in patterns of aberrations and how they may be related to ocular dynamics need to be investigated further before attempts at correction are made.",
    author = "M. Asejczyk-Widlicka and Pierscionek, {B. K.}",
    year = "2007",
    month = "8",
    doi = "10.1136/bjo.2006.109793",
    language = "English",
    volume = "91",
    pages = "1054--1058",
    journal = "British Journal of Ophthalmology",
    issn = "0007-1161",
    number = "8",

    }

    Fluctuations in intraocular pressure and the potential effect on aberrations of the eye. / Asejczyk-Widlicka, M.; Pierscionek, B. K.

    In: BRITISH JOURNAL OF OPHTHALMOLOGY, Vol. 91, No. 8, 08.2007, p. 1054-1058.

    Research output: Contribution to journalArticle

    TY - JOUR

    T1 - Fluctuations in intraocular pressure and the potential effect on aberrations of the eye

    AU - Asejczyk-Widlicka, M.

    AU - Pierscionek, B. K.

    PY - 2007/8

    Y1 - 2007/8

    N2 - Objective: To investigate the fluctuations in intraocular pressure during the day and to see if these are associated with changes in corneal shape and in the patterns of ocular aberrations. Methods: Intraocular pressure, corneal curvature, refractive error, spherical equivalent and aberrations (defocus (sphere); cylinder (astigmatism); coma, trefoil and third order spherical aberration) were measured in 17 healthy subjects three times during the day. The first measurement was made between 9: 00 and 9: 30, the second at midday (12:30-13:00) and the third in the afternoon (17:00-17:30). Aberrations, corneal shape, refractive error and pupil size (for which correction was made) were measured with an Irx3 Dynamic Wavefront Aberrometer. Intraocular pressures were measured using a non-contact tonometer (Cambridge Instruments Inc.) and calibrated with the Goldmann applanation tonometer. Results: Variations in intraocular pressures were unrelated to age or refractive error. Statistically significant differences in intraocular pressure between morning and midday as well as between midday and afternoon were found. Intraocular pressure variations between midday and afternoon were associated with changes in spherical equivalent, corneal radius of curvature and aberrations (defocus, cylinder, coma, trefoil and spherical aberration) over the same time period. Aberration patterns varied between individuals, and no association was found between two eyes of the same subject. Conclusions: Changes in intraocular pressure have no noticeable effect on image quality. This could be because the eye has a compensating mechanism to correct for any effect of ocular dynamics on corneal shape and refractive status. Such a mechanism may also affect the pattern of aberrations or it may be that aberrations alter in a way that offsets any potentially detrimental effects of intraocular pressure change on the retinal image. Variations in patterns of aberrations and how they may be related to ocular dynamics need to be investigated further before attempts at correction are made.

    AB - Objective: To investigate the fluctuations in intraocular pressure during the day and to see if these are associated with changes in corneal shape and in the patterns of ocular aberrations. Methods: Intraocular pressure, corneal curvature, refractive error, spherical equivalent and aberrations (defocus (sphere); cylinder (astigmatism); coma, trefoil and third order spherical aberration) were measured in 17 healthy subjects three times during the day. The first measurement was made between 9: 00 and 9: 30, the second at midday (12:30-13:00) and the third in the afternoon (17:00-17:30). Aberrations, corneal shape, refractive error and pupil size (for which correction was made) were measured with an Irx3 Dynamic Wavefront Aberrometer. Intraocular pressures were measured using a non-contact tonometer (Cambridge Instruments Inc.) and calibrated with the Goldmann applanation tonometer. Results: Variations in intraocular pressures were unrelated to age or refractive error. Statistically significant differences in intraocular pressure between morning and midday as well as between midday and afternoon were found. Intraocular pressure variations between midday and afternoon were associated with changes in spherical equivalent, corneal radius of curvature and aberrations (defocus, cylinder, coma, trefoil and spherical aberration) over the same time period. Aberration patterns varied between individuals, and no association was found between two eyes of the same subject. Conclusions: Changes in intraocular pressure have no noticeable effect on image quality. This could be because the eye has a compensating mechanism to correct for any effect of ocular dynamics on corneal shape and refractive status. Such a mechanism may also affect the pattern of aberrations or it may be that aberrations alter in a way that offsets any potentially detrimental effects of intraocular pressure change on the retinal image. Variations in patterns of aberrations and how they may be related to ocular dynamics need to be investigated further before attempts at correction are made.

    U2 - 10.1136/bjo.2006.109793

    DO - 10.1136/bjo.2006.109793

    M3 - Article

    VL - 91

    SP - 1054

    EP - 1058

    JO - British Journal of Ophthalmology

    T2 - British Journal of Ophthalmology

    JF - British Journal of Ophthalmology

    SN - 0007-1161

    IS - 8

    ER -