Flexural bending of the Zagros foreland basin

Mortaza Pirouz, Jean Philippe Avouac, Adriano Gualandi, Jamshid Hassanzadeh, Pietro Sternai

Research output: Contribution to journalArticlepeer-review

35 Citations (Scopus)


We constrain and model the geometry of the Zagros foreland to assess the equivalent elastic thickness of the northern edge of the Arabian plate and the loads that have originated due to the Arabia-Eurasia collision. The Oligo-Miocene Asmari formation, and its equivalents in Iraq and Syria, is used to estimate the post-collisional subsidence as they separate passive margin sediments from the younger foreland deposits. The depth to these formations is obtained by synthesizing a large database of well logs, seismic profiles and structural sections from the Mesopotamian basin and the Persian Gulf. The foreland depth varies along strike of the Zagros wedge between 1 and 6 km. The foreland is deepest beneath the Dezful embayment, in southwest Iran, and becomes shallower towards both ends. We investigate how the geometry of the foreland relates to the range topography loading based on simple flexural models. Deflection of the Arabian plate is modelled using point load distribution and convolution technique. The results show that the foreland depth is well predicted with a flexural model which assumes loading by the basin sedimentary fill, and thickened crust of the Zagros. The model also predicts a Moho depth consistent with Free-Air anomalies over the foreland and Zagros wedge. The equivalent elastic thickness of the flexed Arabian lithosphere is estimated to be ca. 50 km. We conclude that other sources of loading of the lithosphere, either related to the density variations (e.g. due to a possible lithospheric root) or dynamic origin (e.g. due to sublithospheric mantle flow or lithospheric buckling) have a negligible influence on the foreland geometry, Moho depth and topography of the Zagros. We calculate the shortening across the Zagros assuming conservation of crustal mass during deformation, trapping of all the sediments eroded from the range in the foreland, and an initial crustal thickness of 38 km. This calculation implies a minimum of 126 ± 18 km of crustal shortening due to ophiolite obduction and post-collisional shortening.

Original languageEnglish
Pages (from-to)1659-1680
Number of pages22
JournalGeophysical Journal International
Issue number3
Publication statusPublished (in print/issue) - 1 Sept 2017


  • Continental margins: convergent
  • Crustal structure
  • Lithospheric flexure
  • Numerical modelling
  • Sedimentary basin processes


Dive into the research topics of 'Flexural bending of the Zagros foreland basin'. Together they form a unique fingerprint.

Cite this