Abstract
The simulation, fabrication and characterisation of nanographite MEMS resonators is reported in this paper. The deposition of nanographite is achieved using plasma-enhanced chemical vapour deposition directly onto numerous substrates such as commercial silicon wafers. As a result, many of the reliability issues of devices based on transferred graphene are avoided. The fabrication of the resonators is presented along with a simple undercutting method to overcome buckling, by changing the effective stress of the structure from ~436 MPa compressive, to ~13 MPa tensile. The characterisation of the resonators using electrostatic actuation and laser Doppler vibrometry is reported, demonstrating resonator frequencies from 5–640 kHz and quality factor above 1819 in vacuum obtained.
Original language | English |
---|---|
Article number | 095015 |
Pages (from-to) | 1-8 |
Number of pages | 8 |
Journal | Journal of Micromechanics and Microengineering |
Volume | 27 |
Issue number | 9 |
Early online date | 22 Aug 2017 |
DOIs | |
Publication status | Published - 30 Sep 2017 |