Experimental investigation and numerical modelling of the fire performance for epoxy resin carbon fibre composites of variable thicknesses

Talal Fateh, Jianping Zhang, Michael. A Delichatsios, T. Rogaume

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)
235 Downloads (Pure)

Abstract

This paper applies a unique integrated approach to determine the flammability properties of a composite material (epoxy with carbon fibre) and compares its fire behaviour at two different thicknesses (2.1 and 4.2 mm) by performing small scale (thermo-gravimetric analysis (TGA)/Fourier transform infrared radiation) and meso-scale tests (cone calorimeter). For small-scale tests, experiments were conducted in nitrogen using TGA coupled to gas analysis by Fourier transform infrared radiation. These results allow the determination of thermal stability, main degradation temperature and main gaseous emissions released during the thermal degradation. For meso-scale tests, experiments were carried out using a cone calorimeter with sample dimensions of 100 × 100 mm at five heat fluxes (30, 40, 50, 60 and 70 kW/m2). The results show that the ignition time increases with an increase in the thickness of the material. Relative hazard classification of the fire performance of the current composites has also been compared with other materials using parameters obtained elsewhere. In addition, the effective ignition, thermal and pyrolysis properties obtained from the ignition and mass loss rate experiments for the 4.2-mm thick samples were used in a numerical model for pyrolysis to predict well ignition times, back-surface temperatures and mass pyrolysis rates for all heat fluxes as well as for the 2.1-mm thick samples. Note that the ignition temperature obtained in the cone agrees with the main degradation temperature in the TGA. The flammability properties deduced here can be used to predict the heat release rate for real fire situations using CFD modelling.
Original languageEnglish
Pages (from-to)307-322
JournalFire and Materials
Volume41
Early online date28 Jun 2016
DOIs
Publication statusPublished (in print/issue) - 2017

Keywords

  • cone calorimeter
  • TGA
  • epoxy composite
  • thermal degradation
  • pyrolysis
  • gaseous emissions
  • FTIR

Fingerprint

Dive into the research topics of 'Experimental investigation and numerical modelling of the fire performance for epoxy resin carbon fibre composites of variable thicknesses'. Together they form a unique fingerprint.

Cite this