Enhancement of Fibre Orientation Distribution Reconstruction in Diffusion Weighted Imaging by Single Channel Blind Source Separation

Min Jing, TM McGinnity, SA Coleman, Huaizhong Zhang, Armin Fuchs, JAS Kelso

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

Abstract—In diffusion weighted imaging (DWI), reliable fibre tracking result relies on the accurate reconstruction of the fibre orientation distribution function (fODF) in each individualvoxel. For high angular resolution diffusion imaging (HARDI), deconvolution based approaches can reconstruct the complex fODF and have advantages in terms of computational efficiency and no need to estimate the number of distinct fibre populations.However HARDI based methods usually require relatively high b-values and a large number of gradient directions to reach good results. Such requirements are not always easy to meetin common clinical studies due to limitations in MRI facilities. Apart from this, most of these approaches are sensitivity to noise. In this study, we propose a new framework to enhancethe performance of the spherical deconvolution (SD) approach in low angular resolution DWI by employing a single channel blind source separation (BSS) technique to decompose the fODF initially estimated by SD such that the desired fODF can be extracted from the noisy background. The results based on numerical simulations and two phantom data sets demonstrate that the proposed method achieves better performance than SD in terms of robustness to noise and variation in b-values. In addition, the results from in vivo data have shown that the proposed method has the potential to be applied to low angularresolution DWI which is commonly used in clinical studies.
Original languageEnglish
Pages (from-to)363-373
JournalIEEE Transactions on Biomedical Engineering
Volume59
Issue number2
DOIs
Publication statusPublished - Feb 2012

Fingerprint Dive into the research topics of 'Enhancement of Fibre Orientation Distribution Reconstruction in Diffusion Weighted Imaging by Single Channel Blind Source Separation'. Together they form a unique fingerprint.

  • Cite this