Enhanced out of Plane Electrical Conductivity in Polymer Composites Induced by CO2 Laser Irradiation of Carbon Fibers

Anastasios Karakasidis, Angeliki Karakassides , Michaella Konstantinidou , Alkiviadis Paipetis , P Papakonstantinou

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)
78 Downloads (Pure)

Abstract

The creation of a hierarchical interface between the carbon fiber (CF) and the epoxy resin matrix of fiber-reinforced polymer (CFRP) composites has become an effective strategy for introducing multifunctional properties. Although the efficacy of many hierarchical interfaces has been established in lab-scale, their production is not amenable to high-volume, continuous, cost effective fiber production, which is required for the large-scale commercialization of composites. This work investigates the use of commercially available CO2 laser as a means of nano-structuring the surface of carbon fiber (CF) tows in an incessant throughput procedure. Even though the single carbon fiber tensile strength measurements showed a decrease up to 68% for the exposed CFs, the electrical conductivity exhibited an increment up to 18.4%. Furthermore, results on laminates comprised of irradiated unidirectional CF cloth, demonstrated an enhancement in out of plane electrical conductivity up to 43%, while preserved the Mode-I interlaminar fracture toughness of the composite, showing the potential for multifunctionality. This work indicates that the laser-induced graphitization of the CF surface can act as an interface for fast and cost-effective manufacturing of multifunctional CFRP composite materials.
Original languageEnglish
Article number3561
Pages (from-to) 3561
Number of pages19
JournalApplied Sciences
Volume10
Issue number10
DOIs
Publication statusPublished (in print/issue) - 21 May 2020

Keywords

  • Carbon fibers (CFs)
  • Electrical conductivity
  • Hierarchical structures
  • Interlaminar fracture toughness
  • Laser irradiation
  • Laser modification
  • Multifunctional fibers
  • Surface roughening
  • Tensile strength

Fingerprint

Dive into the research topics of 'Enhanced out of Plane Electrical Conductivity in Polymer Composites Induced by CO2 Laser Irradiation of Carbon Fibers'. Together they form a unique fingerprint.

Cite this