Energetic and exergo-environmental analysis of transcritical high-temperature heat pumps with low GWP refrigerants for industrial waste heat recovery

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)
68 Downloads (Pure)

Abstract

Sub-critical mechanically driven industrial heat pump technologies have gained momentum in recent years with systems capable of supplying temperatures up to 150°C. Extending the operating envelope using heat pump technologies to and beyond 200°C requires an innovative shift towards transcritical techniques to meet the demands of a broader range of industrial processes. Transcritical high-temperature heat pumps (TC-HTHPs) pose many technical and operational challenges requiring research and development to evaluate operational performance. This paper assesses the feasibility of operating a HTHP system to achieve 200°C heat sink temperatures using suitable low GWP refrigerants. The work investigates three different TC-HTHP cycle configurations using a steady-state theoretical model to compare and evaluate energetic, exergetic and environmental performance. In addition, cycle performances for this study are obtained at the optimum pressure for the gas cooler in which the maximum COPs are achieved. The results reveal that the basic cycle with dual internal heat exchanger (IHX) was the most efficient configuration, with HFO-514A and HFO-1234ze(Z) refrigerants identified as the most promising candidates for TC-HTHP systems. Configurations employing HCFO-1233zd(E) exhibited a trade-off between high energetic and exergetic efficiency while providing an A1 safety group classification. A pinch point analysis of the gas cooler demonstrated the need to optimise the overall length to achieve increased operational performance at very high glide temperatures. An evaluation of the environmental impact identified reductions in TEWI value by up to 20 % for the refrigerants tested over HFC-245fa. This study provides a basis for future practical activities of TC-HTHPs using eco-friendly candidates.

Original languageEnglish
Pages (from-to)12-28
Number of pages17
JournalInternational Journal of Refrigeration
Volume156
Early online date26 Sept 2023
DOIs
Publication statusPublished (in print/issue) - 11 Oct 2023

Bibliographical note

Funding Information:
The authors gratefully acknowledge the support from the Department for the Economy (Northern Ireland, EP/T022981/1 ) DEcarbonisation of Low TemperAture Process Heat Industry, DELTA PHI and EP/R045496/1 Low Temperature Heat Recovery and Distribution Network Technologies (LoT-NET).

Publisher Copyright:
© 2023 The Author(s)

Keywords

  • Energy & exergy efficiency
  • Gas cooler
  • Low GWP refrigerants
  • Pinch point
  • Transcritical high-temperature heat pump

Fingerprint

Dive into the research topics of 'Energetic and exergo-environmental analysis of transcritical high-temperature heat pumps with low GWP refrigerants for industrial waste heat recovery'. Together they form a unique fingerprint.

Cite this