TY - JOUR
T1 - Emulsion Electrospinning of Polytetrafluoroethylene (PTFE) Nanofibrous Membranes for High-Performance Triboelectric Nanogenerators
AU - Zhao, Pengfei
AU - Soin, Navneet
AU - Prashanthi, Kovur
AU - Chen, Jinkai
AU - Dong, Shurong
AU - Zhou, Erping
AU - Zhu, Zhigang
AU - Narasimulu, Anand Arcot
AU - Montemagno, Carlo D.
AU - Yu, Liyang
AU - Luo, Jikui
PY - 2018/2/14
Y1 - 2018/2/14
N2 - Electrospinning is a simple, versatile technique for fabricating fibrous nanomaterials with the desirable features of extremely high porosities and large surface areas. Using emulsion electrospinning, polytetrafluoroethylene/ polyethene oxide (PTFE/PEO) membranes were fabricated, followed by a sintering process to obtain pure PTFE fibrous membranes, which were further utilized against a polyamide 6 (PA6) membrane for vertical contact-mode triboelectric nanogenerators (TENGs). Electrostatic force microscopy (EFM) measurements of the sintered electrospun PTFE membranes revealed the presence of both positive and negative surface charges owing to the transfer of positive charge from PEO which was further corroborated by FTIR measurements. To enhance the ensuing triboelectric surface charge, a facile negative charge-injection process was carried out onto the electrospun (ES) PTFE subsequently. The fabricated TENG gave a stabilized peak-to-peak open-circuit voltage (V oc ) of up to ∼900 V, a short-circuit current density (J sc ) of ∼20 mA m -2 , and a corresponding charge density of ∼149 μC m -2 , which are ∼12, 14, and 11 times higher than the corresponding values prior to the ion-injection treatment. This increase in the surface charge density is caused by the inversion of positive surface charges with the simultaneous increase in the negative surface charge on the PTFE surface, which was confirmed by using EFM measurements. The negative charge injection led to an enhanced power output density of ∼9 W m -2 with high stability as confirmed from the continuous operation of the ion-injected PTFE/PA6 TENG for 30 000 operation cycles, without any significant reduction in the output. The work thus introduces a relatively simple, cost-effective, and environmentally friendly technique for fabricating fibrous fluoropolymer polymer membranes with high thermal/chemical resistance in TENG field and a direct ion-injection method which is able to dramatically improve the surface negative charge density of the PTFE fibrous membranes.
AB - Electrospinning is a simple, versatile technique for fabricating fibrous nanomaterials with the desirable features of extremely high porosities and large surface areas. Using emulsion electrospinning, polytetrafluoroethylene/ polyethene oxide (PTFE/PEO) membranes were fabricated, followed by a sintering process to obtain pure PTFE fibrous membranes, which were further utilized against a polyamide 6 (PA6) membrane for vertical contact-mode triboelectric nanogenerators (TENGs). Electrostatic force microscopy (EFM) measurements of the sintered electrospun PTFE membranes revealed the presence of both positive and negative surface charges owing to the transfer of positive charge from PEO which was further corroborated by FTIR measurements. To enhance the ensuing triboelectric surface charge, a facile negative charge-injection process was carried out onto the electrospun (ES) PTFE subsequently. The fabricated TENG gave a stabilized peak-to-peak open-circuit voltage (V oc ) of up to ∼900 V, a short-circuit current density (J sc ) of ∼20 mA m -2 , and a corresponding charge density of ∼149 μC m -2 , which are ∼12, 14, and 11 times higher than the corresponding values prior to the ion-injection treatment. This increase in the surface charge density is caused by the inversion of positive surface charges with the simultaneous increase in the negative surface charge on the PTFE surface, which was confirmed by using EFM measurements. The negative charge injection led to an enhanced power output density of ∼9 W m -2 with high stability as confirmed from the continuous operation of the ion-injected PTFE/PA6 TENG for 30 000 operation cycles, without any significant reduction in the output. The work thus introduces a relatively simple, cost-effective, and environmentally friendly technique for fabricating fibrous fluoropolymer polymer membranes with high thermal/chemical resistance in TENG field and a direct ion-injection method which is able to dramatically improve the surface negative charge density of the PTFE fibrous membranes.
KW - electrostatic force microscopy (EFM)
KW - emulsion electrospinning
KW - ion injection
KW - PEO carrier
KW - PTFE nanofiber
KW - triboelectric nanogenerator
UR - http://www.scopus.com/inward/record.url?scp=85042065436&partnerID=8YFLogxK
UR - https://pure.ulster.ac.uk/en/publications/emulsion-electrospinning-of-polytetrafluoroethylene-ptfe-nanofibr
U2 - 10.1021/acsami.7b18442
DO - 10.1021/acsami.7b18442
M3 - Article
AN - SCOPUS:85042065436
SN - 1944-8244
VL - 10
SP - 5880
EP - 5891
JO - ACS Applied Materials and Interfaces
JF - ACS Applied Materials and Interfaces
IS - 6
ER -