Abstract
Combination cancer chemotherapy provides an important treatment tool, both as an adjuvant and neoadjuvant treatment, this shift in focus from mono to combination therapies has led to increased interest in drug delivery systems (DDS). DDSs, such as polymersomes, are capable of encapsulating large amounts of multiple drugs with both hydrophilic and hydrophobic properties simultaneously, as well as offering a mechanism to combat multi drug resistant cancers and poor patient tolerance of the cytotoxic compounds utilised. In this article, we report the formulation and evaluation of a novel electroneutral polymersome capable of high encapsulation efficacies for multiple drugs (Doxorubicin, 5-Fluorouracil and leucovorin). The in-vivo biodistribution of the polymersome were established and they were found to accumulate largely in tumour tissue. Polymersome encapsulating the three chemotherapeutic drugs were assessed both in-vitro (BxPC-3 cell line) and in-vivo (following intratumoral and intravenous administration) and compared with the same concentration of the three drugs in solution. We report better efficacy and higher maximum tolerated dose for our combination drug loaded polymersomes in all experiments. Furthermore, intratumorally injected combination drug loaded polymersomes exhibited a 62% reduction in tumour volume after 13 days when compared with the free combination solutions. A smaller differential of 13% was observed for when treatment was administered intravenously however, importantly less cardiotoxicity was displayed from the polymersomal DDS. In this study, expression of a number of survival-relevant genes in tumours treated with the free chemotherapy combination was compared with expression of those genes in tumours treated with the polymersomes harbouring those drugs and the significance of findings is discussed.
Original language | English |
---|---|
Pages (from-to) | 327-340 |
Number of pages | 14 |
Journal | Acta Biomaterialia |
Volume | 80 |
Early online date | 8 Sept 2018 |
DOIs | |
Publication status | Published (in print/issue) - 15 Oct 2018 |
Keywords
- combination chemotherapy
- Polymersome
- Pancreatic cancer
- nanoparticle
- drug delivery system