Effects of granular columns in compacted fills

V. Sivakumar, JL Boyd, J. A. Black, J. A. McNeil

    Research output: Contribution to journalArticle

    5 Citations (Scopus)

    Abstract

    Compacted fills are frequently used in engineering construction where site levels need to be raised. Increased environmental restrictions, coupled with the growing cost of virgin aggregate, have prompted more widespread reuse of site-won fill from earthworks. It is well established that the subsequent behaviour of the fill is highly related to the nature of its placement, which, if not correct, can lead to significant future difficulties. When placed, fills are generally unsaturated; however, over time they may experience an increase in water content owing to infiltration arising from rainwater, surface runoff or groundwater recharge. This saturation process can be accompanied by substantial changes in volume or reduction in shear strength; these can result in large and often non-uniform ground movements, which typically cause loss of serviceability. Previous research has indicated that such effects may be reduced through the use of ground improvement techniques such as granular columns. The work reported in this paper examines the performance of both engineered and unengineered compacted fills, prepared at four different initial moisture contents within 2% of optimum prior to saturation. Specimens were prepared by mixing kaolin and well-graded medium sand at a ratio of 1:9. Two loading conditions were considered: (a) monotonic loading and (b) static loading, during which saturation occurred. The performance of the ground improvement was examined by introducing a single 32 mm diameter granular column. In addition, the possibility of column strengthening was also considered by encasing the column in geogrid reinforcement and cement stabilisation. The results have shown that the inclusion of granular columns in unengineered cohesive fill improved the overall bearing capacity and settlement performance; however, a marginal reduction in performance was observed in the engineered fill specimens.
    LanguageEnglish
    Pages189-196
    JournalProceedings of the ICE - Geotechnical Engineering
    Volume163
    Issue numberGE4
    DOIs
    Publication statusPublished - Aug 2010

    Fingerprint

    fill
    ground improvement
    saturation
    earthworks
    ground movement
    kaolin
    effect
    bearing capacity
    rainwater
    shear strength
    reinforcement
    recharge
    moisture content
    stabilization
    cement
    infiltration
    water content
    runoff
    engineering
    sand

    Keywords

    • geotechnical engineering / sustainability

    Cite this

    Sivakumar, V. ; Boyd, JL ; Black, J. A. ; McNeil, J. A. / Effects of granular columns in compacted fills. In: Proceedings of the ICE - Geotechnical Engineering. 2010 ; Vol. 163, No. GE4. pp. 189-196.
    @article{b7656c8319824b228aba7b14524a82f9,
    title = "Effects of granular columns in compacted fills",
    abstract = "Compacted fills are frequently used in engineering construction where site levels need to be raised. Increased environmental restrictions, coupled with the growing cost of virgin aggregate, have prompted more widespread reuse of site-won fill from earthworks. It is well established that the subsequent behaviour of the fill is highly related to the nature of its placement, which, if not correct, can lead to significant future difficulties. When placed, fills are generally unsaturated; however, over time they may experience an increase in water content owing to infiltration arising from rainwater, surface runoff or groundwater recharge. This saturation process can be accompanied by substantial changes in volume or reduction in shear strength; these can result in large and often non-uniform ground movements, which typically cause loss of serviceability. Previous research has indicated that such effects may be reduced through the use of ground improvement techniques such as granular columns. The work reported in this paper examines the performance of both engineered and unengineered compacted fills, prepared at four different initial moisture contents within 2{\%} of optimum prior to saturation. Specimens were prepared by mixing kaolin and well-graded medium sand at a ratio of 1:9. Two loading conditions were considered: (a) monotonic loading and (b) static loading, during which saturation occurred. The performance of the ground improvement was examined by introducing a single 32 mm diameter granular column. In addition, the possibility of column strengthening was also considered by encasing the column in geogrid reinforcement and cement stabilisation. The results have shown that the inclusion of granular columns in unengineered cohesive fill improved the overall bearing capacity and settlement performance; however, a marginal reduction in performance was observed in the engineered fill specimens.",
    keywords = "geotechnical engineering / sustainability",
    author = "V. Sivakumar and JL Boyd and Black, {J. A.} and McNeil, {J. A.}",
    year = "2010",
    month = "8",
    doi = "10.1680/geng.2010.163.4.189",
    language = "English",
    volume = "163",
    pages = "189--196",
    journal = "Proceedings of the ICE - Geotechnical Engineering",
    issn = "1353-2618",
    number = "GE4",

    }

    Effects of granular columns in compacted fills. / Sivakumar, V.; Boyd, JL; Black, J. A.; McNeil, J. A.

    In: Proceedings of the ICE - Geotechnical Engineering, Vol. 163, No. GE4, 08.2010, p. 189-196.

    Research output: Contribution to journalArticle

    TY - JOUR

    T1 - Effects of granular columns in compacted fills

    AU - Sivakumar, V.

    AU - Boyd, JL

    AU - Black, J. A.

    AU - McNeil, J. A.

    PY - 2010/8

    Y1 - 2010/8

    N2 - Compacted fills are frequently used in engineering construction where site levels need to be raised. Increased environmental restrictions, coupled with the growing cost of virgin aggregate, have prompted more widespread reuse of site-won fill from earthworks. It is well established that the subsequent behaviour of the fill is highly related to the nature of its placement, which, if not correct, can lead to significant future difficulties. When placed, fills are generally unsaturated; however, over time they may experience an increase in water content owing to infiltration arising from rainwater, surface runoff or groundwater recharge. This saturation process can be accompanied by substantial changes in volume or reduction in shear strength; these can result in large and often non-uniform ground movements, which typically cause loss of serviceability. Previous research has indicated that such effects may be reduced through the use of ground improvement techniques such as granular columns. The work reported in this paper examines the performance of both engineered and unengineered compacted fills, prepared at four different initial moisture contents within 2% of optimum prior to saturation. Specimens were prepared by mixing kaolin and well-graded medium sand at a ratio of 1:9. Two loading conditions were considered: (a) monotonic loading and (b) static loading, during which saturation occurred. The performance of the ground improvement was examined by introducing a single 32 mm diameter granular column. In addition, the possibility of column strengthening was also considered by encasing the column in geogrid reinforcement and cement stabilisation. The results have shown that the inclusion of granular columns in unengineered cohesive fill improved the overall bearing capacity and settlement performance; however, a marginal reduction in performance was observed in the engineered fill specimens.

    AB - Compacted fills are frequently used in engineering construction where site levels need to be raised. Increased environmental restrictions, coupled with the growing cost of virgin aggregate, have prompted more widespread reuse of site-won fill from earthworks. It is well established that the subsequent behaviour of the fill is highly related to the nature of its placement, which, if not correct, can lead to significant future difficulties. When placed, fills are generally unsaturated; however, over time they may experience an increase in water content owing to infiltration arising from rainwater, surface runoff or groundwater recharge. This saturation process can be accompanied by substantial changes in volume or reduction in shear strength; these can result in large and often non-uniform ground movements, which typically cause loss of serviceability. Previous research has indicated that such effects may be reduced through the use of ground improvement techniques such as granular columns. The work reported in this paper examines the performance of both engineered and unengineered compacted fills, prepared at four different initial moisture contents within 2% of optimum prior to saturation. Specimens were prepared by mixing kaolin and well-graded medium sand at a ratio of 1:9. Two loading conditions were considered: (a) monotonic loading and (b) static loading, during which saturation occurred. The performance of the ground improvement was examined by introducing a single 32 mm diameter granular column. In addition, the possibility of column strengthening was also considered by encasing the column in geogrid reinforcement and cement stabilisation. The results have shown that the inclusion of granular columns in unengineered cohesive fill improved the overall bearing capacity and settlement performance; however, a marginal reduction in performance was observed in the engineered fill specimens.

    KW - geotechnical engineering / sustainability

    U2 - 10.1680/geng.2010.163.4.189

    DO - 10.1680/geng.2010.163.4.189

    M3 - Article

    VL - 163

    SP - 189

    EP - 196

    JO - Proceedings of the ICE - Geotechnical Engineering

    T2 - Proceedings of the ICE - Geotechnical Engineering

    JF - Proceedings of the ICE - Geotechnical Engineering

    SN - 1353-2618

    IS - GE4

    ER -