TY - JOUR
T1 - Effects of an enzymatically stable C-terminal hexapseudopeptide fragment peptide of xenin-25, psi-xenin-6, on pancreatic islet function and metabolism
AU - Craig, Sarah
AU - Gault, Victor A
AU - McClean, S
AU - Hamscher, Gerd
AU - Irwin, Nigel
PY - 2019/10/1
Y1 - 2019/10/1
N2 - Xenin-25 undergoes rapid enzyme metabolism following secretion. Early studies demonstrated bioactivity of a C-terminal hexapeptide fragment of xenin-25, namely xenin-6, which were enhanced through introduction of a reduced N-terminal peptide bond, to yield Ψ-xenin-6. The present study was undertaken to define the biological actions and potential antidiabetic properties of Ψ-xenin-6. In vitro enzymatic stability, insulin and glucagon secretory activity, as well as effects on beta-cell survival were determined. Studies in mice were used to assess the impact of Ψ-xenin-6 on glucose homeostasis and satiety. Ψ-xenin-6 was resistant to murine plasma degradation. In BRIN-BD11 cells and isolated murine islets, Ψ-xenin-6 significantly stimulated insulin secretion, and prominently enhanced the insulinotropic actions of GIP. Xenin-6 and Ψ-xenin-6 had no impact on glucagon secretion, although xenin-6 partially reversed the glucagonotropic action of GIP. Further in vitro investigations revealed that, similar to GLP-1, Ψ-xenin-6 significantly augmented proliferation of human and rodent clonal beta-cells, whilst also fully protecting against cytokine-induced beta-cell cytotoxicity, with greater potency than xenin-25 and xenin-6. When administered to mice in combination with glucose, Ψ-xenin-6 significantly reduced glucose levels and enhanced glucose-induced insulin release, with a duration of biological action beyond 8 h. Ψ-xenin-6 also significantly enhanced the glucose-lowering action of GIP in vivo. In overnight fasted mice, Ψ-xenin-6 exhibited satiety actions at both 25 and 250 nmol/kg. These data demonstrates that Ψ-xenin-6 is a metabolically stable C-terminal fragment analogue of xenin-25, with a metabolic action profile that merits further study as a potential antidiabetic compound.
AB - Xenin-25 undergoes rapid enzyme metabolism following secretion. Early studies demonstrated bioactivity of a C-terminal hexapeptide fragment of xenin-25, namely xenin-6, which were enhanced through introduction of a reduced N-terminal peptide bond, to yield Ψ-xenin-6. The present study was undertaken to define the biological actions and potential antidiabetic properties of Ψ-xenin-6. In vitro enzymatic stability, insulin and glucagon secretory activity, as well as effects on beta-cell survival were determined. Studies in mice were used to assess the impact of Ψ-xenin-6 on glucose homeostasis and satiety. Ψ-xenin-6 was resistant to murine plasma degradation. In BRIN-BD11 cells and isolated murine islets, Ψ-xenin-6 significantly stimulated insulin secretion, and prominently enhanced the insulinotropic actions of GIP. Xenin-6 and Ψ-xenin-6 had no impact on glucagon secretion, although xenin-6 partially reversed the glucagonotropic action of GIP. Further in vitro investigations revealed that, similar to GLP-1, Ψ-xenin-6 significantly augmented proliferation of human and rodent clonal beta-cells, whilst also fully protecting against cytokine-induced beta-cell cytotoxicity, with greater potency than xenin-25 and xenin-6. When administered to mice in combination with glucose, Ψ-xenin-6 significantly reduced glucose levels and enhanced glucose-induced insulin release, with a duration of biological action beyond 8 h. Ψ-xenin-6 also significantly enhanced the glucose-lowering action of GIP in vivo. In overnight fasted mice, Ψ-xenin-6 exhibited satiety actions at both 25 and 250 nmol/kg. These data demonstrates that Ψ-xenin-6 is a metabolically stable C-terminal fragment analogue of xenin-25, with a metabolic action profile that merits further study as a potential antidiabetic compound.
KW - Beta cell
KW - xenin-25
KW - xenin-6
KW - Glucagon
KW - Insulin
KW - diabetes
UR - https://pure.ulster.ac.uk/en/publications/effects-of-an-enzymatically-stable-c-terminal-hexapseudopeptide-f
UR - http://www.scopus.com/inward/record.url?scp=85069972058&partnerID=8YFLogxK
U2 - 10.1016/j.mce.2019.110523
DO - 10.1016/j.mce.2019.110523
M3 - Article
C2 - 31352038
SN - 0303-7207
VL - 496
JO - Molecular and Cellular Endocrinology
JF - Molecular and Cellular Endocrinology
M1 - 110523
ER -