TY - JOUR
T1 - Effect of shock structure on stabilization and blow-off of hydrogen jet flames
AU - Takeno, Keiji
AU - Yamamoto, Shohei
AU - Sakatsume, Ryo
AU - Hirakawa, Shiori
AU - Takeda, Hiroki
AU - Shentsov, Volodymyr
AU - Makarov, DV
AU - Molkov, Vladimir
PY - 2020/3/20
Y1 - 2020/3/20
N2 - Under-expanded hydrogen jet has characteristic shock structure immediately downstream of the nozzle exit. The shock structure depends on the ratio pEX/pA, i.e. the ratio of nozzle exit to ambient pressure, and the distributions of velocity and concentration in an under-expanded hydrogen jet depend on characteristics of the shock structure. Therefore, the shock structure should affect the blow-off behaviour of under-expanded hydrogen jet flame. Since this issue has not been investigated in detail, this study aims to close this knowledge gap. The effect of changes in shock structure on lift-off length and blow-off conditions for non-premixed turbulent hydrogen free jet flame has been experimentally investigated. The shock structure was varied by using three types of nozzles: convergent, straight and divergent nozzles. Inlet diameters of nozzles change from 0.31 to 1.04 mm and outlet diameters from 0.34 to 1.7 mm. The static pressure and the ratio of cross-section area at the nozzle inlet to that at the outlet were varying parameters in this study. Hydrogen was horizontally spouted through a nozzle to atmosphere. The maximum static pressure in a nozzle was 13.2 MPa. The experiments revealed that when the hydrogen jet had sequential shock cell structures, which occurred in the range of pEX/pA smaller than 2.45, a higher mass flow rate of hydrogen was needed for the stabilization of a jet flame than that for pEX/pA larger than 2.45 and that when closed to the ideal expansion (pEX/pA = 1), the mass flow rate for stable flame became maximum. In addition, it was observed that the lift-off length of stable flames followed with sequential shock cell structures were almost the same when the minimum cross-section area of used nozzles was constant. However, when hydrogen jet had a shock structure with single Mach disk, the lift-off lengths and the minimum mass flow rate required for the stable jet flame were decreasing with the decrease of the cross-sectional area ratio of the nozzle exit to inlet.
AB - Under-expanded hydrogen jet has characteristic shock structure immediately downstream of the nozzle exit. The shock structure depends on the ratio pEX/pA, i.e. the ratio of nozzle exit to ambient pressure, and the distributions of velocity and concentration in an under-expanded hydrogen jet depend on characteristics of the shock structure. Therefore, the shock structure should affect the blow-off behaviour of under-expanded hydrogen jet flame. Since this issue has not been investigated in detail, this study aims to close this knowledge gap. The effect of changes in shock structure on lift-off length and blow-off conditions for non-premixed turbulent hydrogen free jet flame has been experimentally investigated. The shock structure was varied by using three types of nozzles: convergent, straight and divergent nozzles. Inlet diameters of nozzles change from 0.31 to 1.04 mm and outlet diameters from 0.34 to 1.7 mm. The static pressure and the ratio of cross-section area at the nozzle inlet to that at the outlet were varying parameters in this study. Hydrogen was horizontally spouted through a nozzle to atmosphere. The maximum static pressure in a nozzle was 13.2 MPa. The experiments revealed that when the hydrogen jet had sequential shock cell structures, which occurred in the range of pEX/pA smaller than 2.45, a higher mass flow rate of hydrogen was needed for the stabilization of a jet flame than that for pEX/pA larger than 2.45 and that when closed to the ideal expansion (pEX/pA = 1), the mass flow rate for stable flame became maximum. In addition, it was observed that the lift-off length of stable flames followed with sequential shock cell structures were almost the same when the minimum cross-section area of used nozzles was constant. However, when hydrogen jet had a shock structure with single Mach disk, the lift-off lengths and the minimum mass flow rate required for the stable jet flame were decreasing with the decrease of the cross-sectional area ratio of the nozzle exit to inlet.
KW - Blow-off
KW - Convergent and divergent nozzles
KW - Lift-off
KW - Non-premixed turbulent flame
KW - Shock structure
KW - Under-expanded jet
UR - https://pure.ulster.ac.uk/en/publications/effect-of-shock-structure-on-stabilization-and-blow-off-of-hydrog
UR - http://www.scopus.com/inward/record.url?scp=85080044244&partnerID=8YFLogxK
U2 - https://doi.org/10.1016/j.ijhydene.2020.01.217
DO - https://doi.org/10.1016/j.ijhydene.2020.01.217
M3 - Article
VL - 45
SP - 10145
EP - 10154
JO - International Journal of Hydrogen Energy
JF - International Journal of Hydrogen Energy
SN - 0360-3199
IS - 16
ER -