TY - JOUR
T1 - Effect of gastrin-releasing peptide on the secretion of mouse islet hormones in vitro
AU - Wilkes, L. C.
AU - Bailey, C. J.
AU - Thompson, M. G.
AU - Conlon, J. M.
AU - Buchanan, K. D.
PY - 1990
Y1 - 1990
N2 - Collagenase-isolated mouse islets were incubated with gastrin-releasing peptide (GRP). At 5.6 mmol glucose/l, 10 nmol GRP/l increased the release of insulin (by 50%) and glucagon (by twofold), decreased the release of pancreatic polypeptide (by 35%), but did not significantly affect the release of somatostatin. At 16.7 mmol glucose/l, 10 nmol GRP/l increased glucagon release (by fivefold) and decreased pancreatic polypeptide release (by 46%), without significantly altering insulin and somatostatin release. GRP (200 nmol/l) did not affect insulin release by perifused mouse islets at 2.8 mmol glucose/l, but increased both first and second phase insulin release after a square wave increase in the glucose concentration to 11.1 mmol/l. At 5.6 mmol glucose/l, GRP (100 pmol/l-100 nmol/l) increased (by 50-70%) insulin release by the RINm5F clonal cell line. GRP did not affect glucose oxidation or the cyclic adenosine monophosphate content of RINm5F cells. However, the intracellular free Ca2+ concentration of RINm5F cells was rapidly and transiently increased by GRP (maximum increase of 64% about 10 s after exposure to 1 μmol GRP/l). The rise of intracellular free Ca2+ was approximately halved in the absence of extracellular Ca2+. The results suggest that GRP may contribute to the normal regulation of the endocrine pancreas. The insulin-releasing effect of GRP is mediated via increased cytosolic free Ca2+, derived both from an increased net influx of extracellular Ca2+ and from mobilization of intracellular Ca2+ stores.
AB - Collagenase-isolated mouse islets were incubated with gastrin-releasing peptide (GRP). At 5.6 mmol glucose/l, 10 nmol GRP/l increased the release of insulin (by 50%) and glucagon (by twofold), decreased the release of pancreatic polypeptide (by 35%), but did not significantly affect the release of somatostatin. At 16.7 mmol glucose/l, 10 nmol GRP/l increased glucagon release (by fivefold) and decreased pancreatic polypeptide release (by 46%), without significantly altering insulin and somatostatin release. GRP (200 nmol/l) did not affect insulin release by perifused mouse islets at 2.8 mmol glucose/l, but increased both first and second phase insulin release after a square wave increase in the glucose concentration to 11.1 mmol/l. At 5.6 mmol glucose/l, GRP (100 pmol/l-100 nmol/l) increased (by 50-70%) insulin release by the RINm5F clonal cell line. GRP did not affect glucose oxidation or the cyclic adenosine monophosphate content of RINm5F cells. However, the intracellular free Ca2+ concentration of RINm5F cells was rapidly and transiently increased by GRP (maximum increase of 64% about 10 s after exposure to 1 μmol GRP/l). The rise of intracellular free Ca2+ was approximately halved in the absence of extracellular Ca2+. The results suggest that GRP may contribute to the normal regulation of the endocrine pancreas. The insulin-releasing effect of GRP is mediated via increased cytosolic free Ca2+, derived both from an increased net influx of extracellular Ca2+ and from mobilization of intracellular Ca2+ stores.
UR - http://www.scopus.com/inward/record.url?scp=0025155240&partnerID=8YFLogxK
U2 - 10.1677/joe.0.1270335
DO - 10.1677/joe.0.1270335
M3 - Article
C2 - 2250156
AN - SCOPUS:0025155240
SN - 0022-0795
VL - 127
SP - 335
EP - 340
JO - Journal of Endocrinology
JF - Journal of Endocrinology
IS - 2
ER -