TY - JOUR
T1 - Effect of aminoisobutyric acid (Aib) substitutions on the antimicrobial and cytolytic activities of the frog skin peptide, temporin-1DRa
AU - Michael Conlon, J.
AU - Al-Kharrge, Rokaya
AU - Ahmed, Eman
AU - Raza, Haider
AU - Galadari, Sehamuddin
AU - Condamine, Eric
PY - 2007/10
Y1 - 2007/10
N2 - Temporin-1DRa (HFLGTLVNLAKKIL.NH2), first isolated from the skin of the California red-legged frog Rana draytonii, shows broad-spectrum antimicrobial activity but its therapeutic potential is limited by its toxicity against mammalian cells. The cytolytic properties of cationic α-helical peptides are determined by a complex interaction between cationicity, hydrophobicity, conformation, and amphipathicity. This study has investigated the cytolytic properties of conformationally constrained analogs of temporin-1DRa containing α-aminoisobutyric acid (Aib) substitutions. Cytolytic activity was determined against the bacteria Escherichia coli and Staphylococcus aureus, the opportunistic yeast pathogen, Candida albicans, human erythrocytes, HepG2 hepatoma-derived cells, and L929 fibroblasts. Aib substitutions at Gly4, Asn8, and Ala10 increased both % helicity, determined in methanol solution, and hydrophobicity resulting in increases in both antimicrobial potencies and toxicities against the mammalian cells. Substitution at Leu6 resulted in an appreciable decrease in cytolytic activity against all cells whereas the substitutions at His1, Phe2, Leu3, Thr5, and Val7 had only minor effects on activity. Substitutions at Leu9, Ile13, Leu14 produced analogs with decreased helicity and hydrophobicity that retained activity against microorganisms but showed appreciably lower cytolytic activities against mammalian cells. In particular, the fourfold increase in therapeutic index [ratio of LC50 against erythrocytes to minimum inhibitory concentration (MIC) against microorganisms] of [Aib13]temporin-1DRa identifies it as a compound with potential for development as a therapeutically valuable anti-infective agent.
AB - Temporin-1DRa (HFLGTLVNLAKKIL.NH2), first isolated from the skin of the California red-legged frog Rana draytonii, shows broad-spectrum antimicrobial activity but its therapeutic potential is limited by its toxicity against mammalian cells. The cytolytic properties of cationic α-helical peptides are determined by a complex interaction between cationicity, hydrophobicity, conformation, and amphipathicity. This study has investigated the cytolytic properties of conformationally constrained analogs of temporin-1DRa containing α-aminoisobutyric acid (Aib) substitutions. Cytolytic activity was determined against the bacteria Escherichia coli and Staphylococcus aureus, the opportunistic yeast pathogen, Candida albicans, human erythrocytes, HepG2 hepatoma-derived cells, and L929 fibroblasts. Aib substitutions at Gly4, Asn8, and Ala10 increased both % helicity, determined in methanol solution, and hydrophobicity resulting in increases in both antimicrobial potencies and toxicities against the mammalian cells. Substitution at Leu6 resulted in an appreciable decrease in cytolytic activity against all cells whereas the substitutions at His1, Phe2, Leu3, Thr5, and Val7 had only minor effects on activity. Substitutions at Leu9, Ile13, Leu14 produced analogs with decreased helicity and hydrophobicity that retained activity against microorganisms but showed appreciably lower cytolytic activities against mammalian cells. In particular, the fourfold increase in therapeutic index [ratio of LC50 against erythrocytes to minimum inhibitory concentration (MIC) against microorganisms] of [Aib13]temporin-1DRa identifies it as a compound with potential for development as a therapeutically valuable anti-infective agent.
KW - α-Aminoisobutyric acid
KW - Amphipathic α-helix
KW - Antimicrobial
KW - Cytolysis
KW - Frog skin
KW - Temporin
UR - http://www.scopus.com/inward/record.url?scp=34548667201&partnerID=8YFLogxK
U2 - 10.1016/j.peptides.2007.07.023
DO - 10.1016/j.peptides.2007.07.023
M3 - Article
C2 - 17767978
AN - SCOPUS:34548667201
SN - 0196-9781
VL - 28
SP - 2075
EP - 2080
JO - Peptides
JF - Peptides
IS - 10
ER -