Effect of a heat release rate on reproducibility of fire test for hydrogen storage cylinders

Research output: Contribution to journalArticle

Abstract

The paper addresses the reproducibility of the fire test in the United Nations “Global technical regulation on hydrogen and fuel cell vehicles” (GTR#13) and similar fire test protocols in other regulations, codes and standards (RCS). Currently, GTR#13 requires controlling the flame temperature beneath the tank. An original Ulster conjugate heat transfer numerical model was applied to carry out a study demonstrating the dependence of a fire resistance rating (FRR) of a composite hydrogen tank on a fire heat release rate (HRR). No thermally activated pressure relief device was used. The validation experiments conducted afterwards at Karlsruhe Institute of Technology (KIT) plus a former USA fire test have confirmed the Ulster’s conclusion to control not only temperatures, yet the fire HRR. This will improve the GTR#13 fire test reproducibility in different laboratories worldwide. The numerically observed variations of FRR were confirmed by the unique experimental data of the authors’ collaborators: FRR=16-22 min for HRR=79 kW, 7-8 min (HRR=165 kW) – both tests were carried out at KIT with identical 36 litres volume and 700 bar pressure tanks; and 6-7 min (HRR=370 kW), though this test in USA was performed with a larger volume tank of 72.4 litres and 350 bar. The data on pool fire test with significantly higher HRR, i.e. 4100 kW, and tank volume of 100 litres and 700 bar pressure confirmed the “saturation” effect in the dependence of FRR on HRR at HRR above 350kW. The results of the study underpin the suggested amendment to GTR#13 to improve the reproducibility of the fire test and perform tests with onboard storage tanks at HRR>350 kW.
LanguageEnglish
PagesN/A-N/A
JournalInternational Journal of Hydrogen Energy
VolumeN/A
Issue numberN/A
Publication statusAccepted/In press - 7 Apr 2018

Fingerprint

Hydrogen storage
Fires
heat
flammability
Fire resistance
hydrogen
ratings
United Nations
storage tanks
Hot Temperature
Hydrogen
flame temperature
fuel cells
Fuel cells
Numerical models
vehicles
heat transfer
Heat transfer
saturation
Temperature

Keywords

  • hydrogen
  • alternative fuel
  • onboard storage
  • fire test
  • fire resistance rating
  • heat release rate

Cite this

@article{c2f28046ceca4ecdb6cd3a555adc1e45,
title = "Effect of a heat release rate on reproducibility of fire test for hydrogen storage cylinders",
abstract = "The paper addresses the reproducibility of the fire test in the United Nations “Global technical regulation on hydrogen and fuel cell vehicles” (GTR#13) and similar fire test protocols in other regulations, codes and standards (RCS). Currently, GTR#13 requires controlling the flame temperature beneath the tank. An original Ulster conjugate heat transfer numerical model was applied to carry out a study demonstrating the dependence of a fire resistance rating (FRR) of a composite hydrogen tank on a fire heat release rate (HRR). No thermally activated pressure relief device was used. The validation experiments conducted afterwards at Karlsruhe Institute of Technology (KIT) plus a former USA fire test have confirmed the Ulster’s conclusion to control not only temperatures, yet the fire HRR. This will improve the GTR#13 fire test reproducibility in different laboratories worldwide. The numerically observed variations of FRR were confirmed by the unique experimental data of the authors’ collaborators: FRR=16-22 min for HRR=79 kW, 7-8 min (HRR=165 kW) – both tests were carried out at KIT with identical 36 litres volume and 700 bar pressure tanks; and 6-7 min (HRR=370 kW), though this test in USA was performed with a larger volume tank of 72.4 litres and 350 bar. The data on pool fire test with significantly higher HRR, i.e. 4100 kW, and tank volume of 100 litres and 700 bar pressure confirmed the “saturation” effect in the dependence of FRR on HRR at HRR above 350kW. The results of the study underpin the suggested amendment to GTR#13 to improve the reproducibility of the fire test and perform tests with onboard storage tanks at HRR>350 kW.",
keywords = "hydrogen, alternative fuel, onboard storage, fire test, fire resistance rating, heat release rate",
author = "Sergii Kashkarov and Dmitriy Makarov and Vladimir Molkov",
year = "2018",
month = "4",
day = "7",
language = "English",
volume = "N/A",
pages = "N/A--N/A",
journal = "International Journal of Hydrogen Energy",
issn = "0360-3199",
publisher = "Elsevier",
number = "N/A",

}

TY - JOUR

T1 - Effect of a heat release rate on reproducibility of fire test for hydrogen storage cylinders

AU - Kashkarov, Sergii

AU - Makarov, Dmitriy

AU - Molkov, Vladimir

PY - 2018/4/7

Y1 - 2018/4/7

N2 - The paper addresses the reproducibility of the fire test in the United Nations “Global technical regulation on hydrogen and fuel cell vehicles” (GTR#13) and similar fire test protocols in other regulations, codes and standards (RCS). Currently, GTR#13 requires controlling the flame temperature beneath the tank. An original Ulster conjugate heat transfer numerical model was applied to carry out a study demonstrating the dependence of a fire resistance rating (FRR) of a composite hydrogen tank on a fire heat release rate (HRR). No thermally activated pressure relief device was used. The validation experiments conducted afterwards at Karlsruhe Institute of Technology (KIT) plus a former USA fire test have confirmed the Ulster’s conclusion to control not only temperatures, yet the fire HRR. This will improve the GTR#13 fire test reproducibility in different laboratories worldwide. The numerically observed variations of FRR were confirmed by the unique experimental data of the authors’ collaborators: FRR=16-22 min for HRR=79 kW, 7-8 min (HRR=165 kW) – both tests were carried out at KIT with identical 36 litres volume and 700 bar pressure tanks; and 6-7 min (HRR=370 kW), though this test in USA was performed with a larger volume tank of 72.4 litres and 350 bar. The data on pool fire test with significantly higher HRR, i.e. 4100 kW, and tank volume of 100 litres and 700 bar pressure confirmed the “saturation” effect in the dependence of FRR on HRR at HRR above 350kW. The results of the study underpin the suggested amendment to GTR#13 to improve the reproducibility of the fire test and perform tests with onboard storage tanks at HRR>350 kW.

AB - The paper addresses the reproducibility of the fire test in the United Nations “Global technical regulation on hydrogen and fuel cell vehicles” (GTR#13) and similar fire test protocols in other regulations, codes and standards (RCS). Currently, GTR#13 requires controlling the flame temperature beneath the tank. An original Ulster conjugate heat transfer numerical model was applied to carry out a study demonstrating the dependence of a fire resistance rating (FRR) of a composite hydrogen tank on a fire heat release rate (HRR). No thermally activated pressure relief device was used. The validation experiments conducted afterwards at Karlsruhe Institute of Technology (KIT) plus a former USA fire test have confirmed the Ulster’s conclusion to control not only temperatures, yet the fire HRR. This will improve the GTR#13 fire test reproducibility in different laboratories worldwide. The numerically observed variations of FRR were confirmed by the unique experimental data of the authors’ collaborators: FRR=16-22 min for HRR=79 kW, 7-8 min (HRR=165 kW) – both tests were carried out at KIT with identical 36 litres volume and 700 bar pressure tanks; and 6-7 min (HRR=370 kW), though this test in USA was performed with a larger volume tank of 72.4 litres and 350 bar. The data on pool fire test with significantly higher HRR, i.e. 4100 kW, and tank volume of 100 litres and 700 bar pressure confirmed the “saturation” effect in the dependence of FRR on HRR at HRR above 350kW. The results of the study underpin the suggested amendment to GTR#13 to improve the reproducibility of the fire test and perform tests with onboard storage tanks at HRR>350 kW.

KW - hydrogen

KW - alternative fuel

KW - onboard storage

KW - fire test

KW - fire resistance rating

KW - heat release rate

M3 - Article

VL - N/A

SP - N/A-N/A

JO - International Journal of Hydrogen Energy

T2 - International Journal of Hydrogen Energy

JF - International Journal of Hydrogen Energy

SN - 0360-3199

IS - N/A

ER -