Dysregulated FOXO1 activity drives skeletal muscle intrinsic dysfunction in amyotrophic lateral sclerosis

Mónica Zufiría, Oihane Pikatza-Menoio, Maddi Garciandia-Arcelus, Xabier Bengoetxea, Andrés Jiménez, Amaia Elicegui, María Levchuk, Olatz Arnold-García, Jon Ondaro, Pablo Iruzubieta, Laura Rodríguez-Gómez, Uxoa Fernández-Pelayo, Mikel Muñoz-Oreja, Ana Aiastui, José Manuel García-Verdugo, Vicente Herranz-Pérez, Miren Zulaica, Juan José Poza, Rebeca Ruiz-Onandi, Roberto Fernández-TorrónJuan Bautista Espinal, Mario Bonilla, Ana Lersundi, Gorka Fernández-Eulate, Javier Riancho, Ainara Vallejo-Illarramendi, Ian James Holt, Amets Sáenz, Edoardo Malfatti, Stéphanie Duguez, Lorea Blázquez, Adolfo López de Munain, Gorka Gerenu, Francisco Gil-Bea, Sonia Alonso-Martín

Research output: Contribution to journalArticlepeer-review

Abstract

Amyotrophic Lateral Sclerosis (ALS) is a multisystemic neurodegenerative disorder, with accumulating evidence indicating metabolic disruptions in the skeletal muscle preceding disease symptoms, rather than them manifesting as a secondary consequence of motor neuron (MN) degeneration. Hence, energy homeostasis is deeply implicated in the complex physiopathology of ALS and skeletal muscle has emerged as a key therapeutic target. Here, we describe intrinsic abnormalities in ALS skeletal muscle, both in patient-derived muscle cells and in muscle cell lines with genetic knockdown of genes related to familial ALS, such as TARDBP (TDP-43) and FUS. We found a functional impairment of myogenesis that parallels defects of glucose oxidation in ALS muscle cells. We identified FOXO1 transcription factor as a key mediator of these metabolic and functional features in ALS muscle, via gene expression profiling and biochemical surveys in TDP-43 and FUS-silenced muscle progenitors. Strikingly, inhibition of FOXO1 mitigated the impaired myogenesis in both the genetically modified and the primary ALS myoblasts. In addition, specific in vivo conditional knockdown of TDP-43 or FUS orthologs (TBPH or caz) in Drosophila muscle precursor cells resulted in decreased innervation and profound dysfunction of motor nerve terminals and neuromuscular synapses, accompanied by motor abnormalities and reduced lifespan. Remarkably, these phenotypes were partially corrected by foxo inhibition, bolstering the potential pharmacological management of muscle intrinsic abnormalities associated with ALS. The findings demonstrate an intrinsic muscle dysfunction in ALS, which can be modulated by targeting FOXO factors, paving the way for novel therapeutic approaches that focus on the skeletal muscle as complementary target tissue.
Original languageEnglish
Article number43
Pages (from-to)1-27
Number of pages27
JournalActa Neuropathologica
Volume148
Issue number1
Early online date16 Sept 2024
DOIs
Publication statusPublished online - 16 Sept 2024

Bibliographical note

Publisher Copyright:
© The Author(s) 2024.

Data Access Statement

Sequencing data have been deposited in GEO under accession code GSE227573.

Keywords

  • Amyotrophic lateral sclerosis
  • FUS
  • Myogenesis
  • FOXO1
  • Glycolysis
  • TDP-43

Fingerprint

Dive into the research topics of 'Dysregulated FOXO1 activity drives skeletal muscle intrinsic dysfunction in amyotrophic lateral sclerosis'. Together they form a unique fingerprint.

Cite this