Dynamics of blast wave and fireball after hydrogen tank rupture in a fire in the open atmosphere

Research output: Contribution to journalArticle

Abstract

This paper describes a CFD model of the blast wave and fireball dynamics after high-pressure hydrogen tank rupture in a fire in the open atmosphere. Experiments on rupture in a fire of tanks with nominal working pressure 35 MPa and 70 MPa are used to validate the model and get insights into underlying physical phenomena. Parametric studies are performed to understand the effect of different physical sub-models, numerical methods and other model parameters, e.g. instantaneous or inertial tank opening, on the convergence of simulations and closer reproduction of experiments. The model reproduces experiments well using different turbulence (RNG, Smagorinski-Lilly) and combustion (EDC, FRC) sub-models. It is demonstrated that hydrogen combustion at the contact surface between heated by starting shock air and cooled by expansion hydrogen at the initial stage of the process affects the blast wave strength, i.e. the peak pressure of the leading front and the blast wave impulse.
Original languageEnglish
Number of pages29
JournalInternational Journal of Hydrogen Energy
Publication statusAccepted/In press - 24 Oct 2020

Keywords

  • Hydrogen safety
  • Tank rupture
  • Blast wave
  • fireball
  • CFD model
  • validation

Fingerprint Dive into the research topics of 'Dynamics of blast wave and fireball after hydrogen tank rupture in a fire in the open atmosphere'. Together they form a unique fingerprint.

Cite this