Abstract
Numerical computation is a focus of DNA computing, and matrix operations are among the most basic and frequently used operations in numerical computation. As an important computing tool, matrix operations are often used to deal with intensive computing tasks. During calculation, the speed and accuracy of matrix operations directly affect the performance of the entire computing system. Therefore, it is important to find a way to perform matrix calculations that can ensure the speed of calculations and improve the accuracy. This paper proposes a DNA matrix operation method based on the mechanism of the DNAzyme binding to auxiliary strands to cleave the substrate. In this mechanism, the DNAzyme binding substrate requires the connection of two auxiliary strands.
Without any of the two auxiliary strands, the DNAzyme does not cleave the substrate. Based on this mechanism, the multiplication operation of two matrices is realized; the two types of auxiliary strands are used as elements of the two matrices, to participate in the operation, and then are combined with the DNAzyme to cut the substrate and output the result of the matrix operation. This research provides a new method of matrix operations and provides ideas for more complex computing systems.
Without any of the two auxiliary strands, the DNAzyme does not cleave the substrate. Based on this mechanism, the multiplication operation of two matrices is realized; the two types of auxiliary strands are used as elements of the two matrices, to participate in the operation, and then are combined with the DNAzyme to cut the substrate and output the result of the matrix operation. This research provides a new method of matrix operations and provides ideas for more complex computing systems.
Original language | English |
---|---|
Article number | 1797 |
Pages (from-to) | 1-16 |
Number of pages | 16 |
Journal | Biomolecules |
Volume | 11 |
Issue number | 12 |
Early online date | 30 Nov 2021 |
DOIs | |
Publication status | Published online - 30 Nov 2021 |
Bibliographical note
Funding Information:This work is supported by the National Key Technology R&D Program of China (No.2018YFC0910500), the National Natural Science Foundation of China (Nos. 61425002, 61751203, 61772100, 61972266, 61802040), Liao Ning Revitalization Talents Program (No. XLYC2008017), the Innovation and Entrepreneurship Team of Dalian University (No. XQN202008), Natural Science Foundation of Liaoning Province (No. 2021MS344), Scientific Research Fund of Liaoning Provincial Education Department (No. LJKZ1186), Dalian University Scientific Research Platform Program (No. 202101YB02).
Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Keywords
- DNA computing
- numerical computation
- DNAzyme
- matrix operations