Detection of Mild Cognitive Impairment with MEG Functional Connectivity Using Wavelet-Based Neuromarkers

Su Yang, Jose Miguel Sanchez Bornot, Ricardo Bruña Fernandez, Farzin Deravi, Sanaul Hoque, KongFatt Wong-Lin, Girijesh Prasad

Research output: Contribution to journalArticlepeer-review

50 Downloads (Pure)

Abstract

Studies on developing effective neuromarkers based on magnetoencephalographic (MEG) signals have been drawing increasing attention in the neuroscience community. This study explores the idea of using source-based magnitude-squared spectral coherence as a spatial indicator for effective regions of interest (ROIs) localization, subsequently discriminating the participants with mild cognitive impairment (MCI) from a group of age-matched healthy control (HC) elderly participants. We found that the cortical regions could be divided into two distinctive groups based on their coherence indices. Compared to HC, some ROIs showed increased connectivity (hyper-connected ROIs) for MCI participants, whereas the remaining ROIs demonstrated reduced connectivity (hypo-connected ROIs). Based on these findings, a series of wavelet-based source-level neuromarkers for MCI detection are proposed and explored, with respect to the two distinctive ROI groups. It was found that the neuromarkers extracted from the hyper-connected ROIs performed significantly better for MCI detection than those from the hypo-connected ROIs. The neuromarkers were classified using support vector machine (SVM) and k-NN classifiers and evaluated through Monte Carlo cross-validation. An average recognition rate of 93.83% was obtained using source-reconstructed signals from the hyper-connected ROI group. To better conform to clinical practice settings, a leave-one-out cross-validation (LOOCV) approach was also employed to ensure that the data for testing was from a participant that the classifier has never seen. Using LOOCV, we found the best average classification accuracy was reduced to 83.80% using the same set of neuromarkers obtained from the ROI group with functional hyper-connections. This performance surpassed the results reported using wavelet-based features by approximately 15%. Overall, our work suggests that (1) certain ROIs are particularly effective for MCI detection, especially when multi-resolution wavelet biomarkers are employed for such diagnosis; (2) there exists a significant performance difference in system evaluation between research-based experimental design and clinically accepted evaluation standards.
Original languageEnglish
Article numbere6210
Pages (from-to)1-18
Number of pages18
JournalSensors
Volume21
Issue number18
Early online date16 Sept 2021
DOIs
Publication statusPublished online - 16 Sept 2021

Bibliographical note

Funding Information:
This work was supported by the Northern Ireland Functional Brain Mapping Project Facil-ity (1303/101154803), funded by Invest Northern Ireland and the University of Ulster, Alzheimer?s Research UK (ARUK) NI Pump Priming, EU?s INTERREG VA Programme, managed by the Special EU Programs Body (SEUPB), Ulster University Research Challenge Fund, and the COST Action Open Multiscale Systems Medicine (OpenMultiMed) supported by COST (European Cooperation in Science and Technology).

Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.

Keywords

  • MEG
  • connectivity coherence
  • wavelet-based neuromarker
  • hyperconnectivity
  • hypoconnectivity
  • MCI detection
  • Hyperconnectivity
  • Hypocon-nectivity
  • Wavelet-based neuromarker
  • Connectivity coherence

Fingerprint

Dive into the research topics of 'Detection of Mild Cognitive Impairment with MEG Functional Connectivity Using Wavelet-Based Neuromarkers'. Together they form a unique fingerprint.

Cite this