TY - JOUR
T1 - Designer fibers from 2D to 3D – Simultaneous and controlled engineering of morphology, shape and size
AU - Yao, Zhi Cheng
AU - Zhang, Chunchen
AU - Ahmad, Zeeshan
AU - Huang, Jie
AU - Li, Jing Song
AU - Chang, Ming Wei
N1 - Ming-Wei was employed in China at the time of acceptance and publication
PY - 2018/2/15
Y1 - 2018/2/15
N2 - Topography and surface morphology of micrometer and nanometer scaled fibrous biomaterials are crucial for bioactive component encapsulation, release, promoting cell proliferation and interaction within biological environment. Specifically, for drug delivery and tissue repair applications, surface engineering provides control on both aspects in tandem. In this study, the bioactive component (ganoderma lucidum spore polysaccharide (GLSP)) was loaded into zein prolamine (ZP) fiber matrices via coaxial electrospinning (CES) technique. During the CES process, various outer layer enveloping fluids were used to modulate fiber topography in-situ (from 2D to 3D). SEM and water contact angle tests indicate enveloping media impact electrospun fiber diameter (ranging from 400 nm to 3.0 μm) and morphologies (from flat ribbon-like to solid cylindrical structures), with the latter impacting GLSP release profile. Furthermore, CCK-8 assay assessment indicates fibroblast cell proliferation (L929 cell line), while cell extension was also observed for modified ZP fibers. The results demonstrate potential applications of modified fiber morphologies, which are tailored in-situ without impacting chemical stability and encapsulation.
AB - Topography and surface morphology of micrometer and nanometer scaled fibrous biomaterials are crucial for bioactive component encapsulation, release, promoting cell proliferation and interaction within biological environment. Specifically, for drug delivery and tissue repair applications, surface engineering provides control on both aspects in tandem. In this study, the bioactive component (ganoderma lucidum spore polysaccharide (GLSP)) was loaded into zein prolamine (ZP) fiber matrices via coaxial electrospinning (CES) technique. During the CES process, various outer layer enveloping fluids were used to modulate fiber topography in-situ (from 2D to 3D). SEM and water contact angle tests indicate enveloping media impact electrospun fiber diameter (ranging from 400 nm to 3.0 μm) and morphologies (from flat ribbon-like to solid cylindrical structures), with the latter impacting GLSP release profile. Furthermore, CCK-8 assay assessment indicates fibroblast cell proliferation (L929 cell line), while cell extension was also observed for modified ZP fibers. The results demonstrate potential applications of modified fiber morphologies, which are tailored in-situ without impacting chemical stability and encapsulation.
KW - Biocompatibility
KW - Coaxial electrospinning
KW - Fiber morphology
KW - Ganoderma lucidum spore polysaccharide
KW - Zein prolamine
UR - http://www.scopus.com/inward/record.url?scp=85034045979&partnerID=8YFLogxK
U2 - 10.1016/j.cej.2017.10.033
DO - 10.1016/j.cej.2017.10.033
M3 - Article
AN - SCOPUS:85034045979
VL - 334
SP - 89
EP - 98
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
SN - 1385-8947
ER -