Abstract
This paper presents the novel theoretical design, CAD modeling, and performance analysis of a compact and reliable microwave beamforming network (MBFN) which has been developed based on the RF Rotman lens switched-beam steered array for operation in Ku frequency band. The objective of this investigation is to develop a passive beam steering microwave network device intended for the potential suitable use in satellite communications beam scanning electronically scanned arrays. A thorough Ku-band satellite microwave network system has been theoretically designed and simulated along with the analysis of its output RF characteristics. The antenna array feeding network is capable of multi-beams generation and wide-band operation in terms of the true-time-delay (TDD) and low dispersive properties in order to allow simultaneous operation of multiple RF beams. The Rotman lens demonstrates the potential appropriateness in order to develop a high-performance and well-established design for advanced satellite microwave systems, services, and devices.
Original language | English |
---|---|
Pages (from-to) | 41-55 |
Journal | Progress In Electromagnetics Research M |
Volume | 28 |
DOIs | |
Publication status | Published (in print/issue) - 3 Jan 2013 |