Abstract
This study presents a fully coupled temperature-displacement finite element modelling of the injection stretch-blow moulding (ISBM) process of polyethylene terephthatate (PET) bottles using ABAQUS with a view to optimising the process conditions. A physically-based material model (Buckley model) was used to predict the mechanical behaviour of PET at temperatures slightly above its glass transition temperature. A model incorporating heat transfer between the stretch rod, the preform and the mould was built using axisymmetric solid elements. Extensive finite element analyses were carried out to predict the deformation, the distribution and history of strain and temperature during ISBM of a 20g-330 ml bottle, which was made in an in situ test on a Sidel SB06 machine. Comparisons of numerical results with the measurements demonstrate that the model can satisfactorily model the sidewall thickness and material distributions. It is also shown that significant non-linear differentials exist in temperature and strain in both bottle thickness and length directions during the process. This justifies the employment of a volume approach to accurately predict the final mechanical properties of the bottles governed by the orientation and crystallinity which are highly temperature and strain dependent.
Original language | English |
---|---|
Pages (from-to) | 20-27 |
Number of pages | 8 |
Journal | Journal of Materials Processing Technology |
Volume | 153-154 |
Issue number | 1-3 |
DOIs | |
Publication status | Published (in print/issue) - 10 Nov 2004 |
Keywords
- Finite element analysis
- PET bottles
- Stretch-blow moulding