Compensating for thalamocortical synaptic loss in Alzheimer's disease

Kamal Abuhassan, Damien Coyle, LP Maguire

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

The study presents a thalamocortical network model which oscillates within the alpha frequency band (8–13 Hz) as recorded in the wakeful relaxed state with closed eyes to study the neural causes of abnormal oscillatory activity in Alzheimer’s disease (AD). Incorporated within the model are various types of cortical excitatory and inhibitory neurons, recurrently connected to thalamic and reticular thalamic regions with the ratios and distances derived from the mammalian thalamocortical system. The model is utilized to study the impacts of four types of connectivity loss on the model’s spectral dynamics. The study focuses on investigating degeneration of corticocortical, thalamocortical,corticothalamic, and corticoreticular couplings, with an emphasis on the influence of each modeled case on the spectral output of the model. Synaptic compensation has been included in each model to examine the interplay between synaptic deletion and compensation mechanisms, and the oscillatory activity of the network. The results of power spectra and event related desynchronization/synchronization (ERD/S) analyses show that the dynamics of the thalamic and cortical oscillations are significantly influenced by corticocortical synaptic loss. Interestingly, the patterns of changes in thalamic spectral activity are correlated with those in the cortical model. Similarly, the thalamic oscillatory activity is diminished after partial corticothalamic denervation. The results suggest that thalamic atrophy is a secondary pathology to cortical shrinkage in Alzheimer’s disease. In addition, this study finds that the inhibition from neurons in the thalamic reticular nucleus(RTN) to thalamic relay (TCR) neurons plays a key role in regulating thalamic oscillations; disinhibition disrupts thalamic oscillatory activity even though TCR neurons are more depolarized after being released from RTN inhibition. This study provides information that can be explored experimentally to further our understanding on the neurodegeneration associated with AD pathology.
LanguageEnglish
JournalFrontiers in computational Neuroscience
Volume8
DOIs
Publication statusPublished - 2014

Fingerprint

Alzheimer Disease
Neurons
Pathology
Thalamic Nuclei
Denervation
Atrophy
Inhibition (Psychology)

Cite this

@article{c317d3c20d6f4968a88e24318857bcc1,
title = "Compensating for thalamocortical synaptic loss in Alzheimer's disease",
abstract = "The study presents a thalamocortical network model which oscillates within the alpha frequency band (8–13 Hz) as recorded in the wakeful relaxed state with closed eyes to study the neural causes of abnormal oscillatory activity in Alzheimer’s disease (AD). Incorporated within the model are various types of cortical excitatory and inhibitory neurons, recurrently connected to thalamic and reticular thalamic regions with the ratios and distances derived from the mammalian thalamocortical system. The model is utilized to study the impacts of four types of connectivity loss on the model’s spectral dynamics. The study focuses on investigating degeneration of corticocortical, thalamocortical,corticothalamic, and corticoreticular couplings, with an emphasis on the influence of each modeled case on the spectral output of the model. Synaptic compensation has been included in each model to examine the interplay between synaptic deletion and compensation mechanisms, and the oscillatory activity of the network. The results of power spectra and event related desynchronization/synchronization (ERD/S) analyses show that the dynamics of the thalamic and cortical oscillations are significantly influenced by corticocortical synaptic loss. Interestingly, the patterns of changes in thalamic spectral activity are correlated with those in the cortical model. Similarly, the thalamic oscillatory activity is diminished after partial corticothalamic denervation. The results suggest that thalamic atrophy is a secondary pathology to cortical shrinkage in Alzheimer’s disease. In addition, this study finds that the inhibition from neurons in the thalamic reticular nucleus(RTN) to thalamic relay (TCR) neurons plays a key role in regulating thalamic oscillations; disinhibition disrupts thalamic oscillatory activity even though TCR neurons are more depolarized after being released from RTN inhibition. This study provides information that can be explored experimentally to further our understanding on the neurodegeneration associated with AD pathology.",
author = "Kamal Abuhassan and Damien Coyle and LP Maguire",
year = "2014",
doi = "10.3389/fncom.2014.00065",
language = "English",
volume = "8",
journal = "Frontiers in computational Neuroscience",
issn = "1662-5188",

}

Compensating for thalamocortical synaptic loss in Alzheimer's disease. / Abuhassan, Kamal; Coyle, Damien; Maguire, LP.

In: Frontiers in computational Neuroscience, Vol. 8, 2014.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Compensating for thalamocortical synaptic loss in Alzheimer's disease

AU - Abuhassan, Kamal

AU - Coyle, Damien

AU - Maguire, LP

PY - 2014

Y1 - 2014

N2 - The study presents a thalamocortical network model which oscillates within the alpha frequency band (8–13 Hz) as recorded in the wakeful relaxed state with closed eyes to study the neural causes of abnormal oscillatory activity in Alzheimer’s disease (AD). Incorporated within the model are various types of cortical excitatory and inhibitory neurons, recurrently connected to thalamic and reticular thalamic regions with the ratios and distances derived from the mammalian thalamocortical system. The model is utilized to study the impacts of four types of connectivity loss on the model’s spectral dynamics. The study focuses on investigating degeneration of corticocortical, thalamocortical,corticothalamic, and corticoreticular couplings, with an emphasis on the influence of each modeled case on the spectral output of the model. Synaptic compensation has been included in each model to examine the interplay between synaptic deletion and compensation mechanisms, and the oscillatory activity of the network. The results of power spectra and event related desynchronization/synchronization (ERD/S) analyses show that the dynamics of the thalamic and cortical oscillations are significantly influenced by corticocortical synaptic loss. Interestingly, the patterns of changes in thalamic spectral activity are correlated with those in the cortical model. Similarly, the thalamic oscillatory activity is diminished after partial corticothalamic denervation. The results suggest that thalamic atrophy is a secondary pathology to cortical shrinkage in Alzheimer’s disease. In addition, this study finds that the inhibition from neurons in the thalamic reticular nucleus(RTN) to thalamic relay (TCR) neurons plays a key role in regulating thalamic oscillations; disinhibition disrupts thalamic oscillatory activity even though TCR neurons are more depolarized after being released from RTN inhibition. This study provides information that can be explored experimentally to further our understanding on the neurodegeneration associated with AD pathology.

AB - The study presents a thalamocortical network model which oscillates within the alpha frequency band (8–13 Hz) as recorded in the wakeful relaxed state with closed eyes to study the neural causes of abnormal oscillatory activity in Alzheimer’s disease (AD). Incorporated within the model are various types of cortical excitatory and inhibitory neurons, recurrently connected to thalamic and reticular thalamic regions with the ratios and distances derived from the mammalian thalamocortical system. The model is utilized to study the impacts of four types of connectivity loss on the model’s spectral dynamics. The study focuses on investigating degeneration of corticocortical, thalamocortical,corticothalamic, and corticoreticular couplings, with an emphasis on the influence of each modeled case on the spectral output of the model. Synaptic compensation has been included in each model to examine the interplay between synaptic deletion and compensation mechanisms, and the oscillatory activity of the network. The results of power spectra and event related desynchronization/synchronization (ERD/S) analyses show that the dynamics of the thalamic and cortical oscillations are significantly influenced by corticocortical synaptic loss. Interestingly, the patterns of changes in thalamic spectral activity are correlated with those in the cortical model. Similarly, the thalamic oscillatory activity is diminished after partial corticothalamic denervation. The results suggest that thalamic atrophy is a secondary pathology to cortical shrinkage in Alzheimer’s disease. In addition, this study finds that the inhibition from neurons in the thalamic reticular nucleus(RTN) to thalamic relay (TCR) neurons plays a key role in regulating thalamic oscillations; disinhibition disrupts thalamic oscillatory activity even though TCR neurons are more depolarized after being released from RTN inhibition. This study provides information that can be explored experimentally to further our understanding on the neurodegeneration associated with AD pathology.

UR - http://isrc.ulster.ac.uk/dcoyle/contact.html

U2 - 10.3389/fncom.2014.00065

DO - 10.3389/fncom.2014.00065

M3 - Article

VL - 8

JO - Frontiers in computational Neuroscience

T2 - Frontiers in computational Neuroscience

JF - Frontiers in computational Neuroscience

SN - 1662-5188

ER -