Comparison of experimental results and numerical predictions of drop diameter from a single submerged nozzle in a liquid-liquid system

FA Hamad, MK Khan, BK Pierscionek, HH Bruun

    Research output: Contribution to journalArticlepeer-review

    6 Citations (Scopus)

    Abstract

    This paper presents a comparison of experimental results and numerical predictions of drop formation from a single submerged nozzle for a liquid-liquid system. The theoretical model is a modification of previous models used for a two-stage drop formation mechanism. The model has been tested against experimental data for kerosene drop formation in distilled water using a range of different nozzle diameters. In addition, our liquid-liquid model has been compared with both experimental and predicted results from published literature. These comparisons demonstrate that for liquid-liquid systems, the present predictions of drop diameter versus dispersed phase nozzle velocity are in overall agreement with both the present and previous experimental results. In addition, the present model predictions are more accurate than those of previous models for liquid-liquid systems.
    Original languageEnglish
    Pages (from-to)322-328
    JournalCanadian Journal of Chemical Engineering
    Volume79
    Issue number3
    Publication statusPublished (in print/issue) - Jun 2001

    Fingerprint

    Dive into the research topics of 'Comparison of experimental results and numerical predictions of drop diameter from a single submerged nozzle in a liquid-liquid system'. Together they form a unique fingerprint.

    Cite this