Comparative study on the effect of RF and DBD plasma treatment on PTFE surface modification

C Liu, JQ Wu, LQ Ren, J Tong, JQ Li, N Cui, NMD Brown, BJ Meenan

Research output: Contribution to journalArticlepeer-review

105 Citations (Scopus)


This paper reports, in a comparative method, the effect of dielectric barrier discharge (DBD) plasma and radio frequency (RF) plasma on the surface wettability, chemistry and microstructure changes of the surface of polytetrafluroethylene (PTFE). Both types of plasma could improve the PTFE surface wettability significantly owing to the changes in surface chemistry and surface microstructure. The high-energy species in high-vacuum (HV) plasma cause the PTFE surface severely etched and causing decomposition of outmost layer of PTFE, results in the evolution of tetrafluoroethylene via scission of the (CF2)n chain to yield oligomeric segments. In comparison, few heavy species in DBD plasma have high enough energy to cause the scission of the (CF2)n chain to yield oligomeric segments, thus less etching effect. The contact angle variation with energy dose on RF plasma-treated surface demonstrated a two-stage decrease behaviour: an initial fast decrease stage followed by a levelled-off stage. In comparison, three stages of behaviour are evident for DBD plasma-treated surface. A drastic decrease of the contact angle was recorded during early DBD plasma treatment (at low energy dose), followed by a steady stage and then a slow recovery stage.
Original languageEnglish
Pages (from-to)340-346
JournalMaterials Chemistry and Physics
Issue number2-3
Publication statusPublished - Jun 2004


  • Polytetrafluoroethylene
  • Plasma etching
  • Surface properties


Dive into the research topics of 'Comparative study on the effect of RF and DBD plasma treatment on PTFE surface modification'. Together they form a unique fingerprint.

Cite this