Abstract
In this paper, we present an investigation into the combination of four different classification methods for text categorization using Dempster’s rule of combination. These methods include the Support Vector Machine, kNN (nearest neighbours), kNN model-based approach (kNNM), and Rocchio methods. We first present an approach for effectively combining the different classification methods. We then apply these methods to a benchmark data collection of 20-newsgroup, individually and in combination. Our experimental results show that the performance of the best combination of the different classifiers on the 10 groups of the benchmark data can achieve 91.07% classification accuracy, which is 2.68% better than that of the best individual method, SVM, on average.
Original language | English |
---|---|
Title of host publication | Modeling Decisions for Artificial Intelligence Lecture Notes in Computer Science |
Publisher | Springer |
Pages | 127-138 |
ISBN (Print) | 978-3-540-22555-3 |
Publication status | Published (in print/issue) - 2004 |