Columnar-to-Equiaxed Transition in SOLidification Processing (CETSOL): A project of the European Space Agency (ESA) - Microgravity Applications Promotion (MAP) programme

Ch A. Gandin, B. Billia, G. Zimmermann, D. J. Browne, M. D. Dupouy, G. Guillemot, H. Nguyen-Thi, N. Mangelinck-Noël, G. Reinhart, L. Sturz, S. Mc Fadden, J. Banaszek, Y. Fautrelle, K. Zaidat, A. Ciobanas

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

11 Citations (Scopus)

Abstract

The main objective of the research project of the European Space Agency (ESA) - Microgravity Application Promotion (MAP) programme entitled Columnar-to-Equiaxed Transition in SOLidification Processing (CETSOL) is the investigation of the formation of the transition from columnar to equiaxed macrostructure that takes place in casting. Indeed, grain structures observed in most casting processes of metallic alloys are the result of a competition between the growth of several arrays of dendrites that develop under constrained and unconstrained conditions, leading to the CET. A dramatic effect of buoyancy-driven flow on the transport of equiaxed crystals on earth is acknowledged. This leads to difficulties in conducting precise investigations of the origin of the formation of the equiaxed crystals and their interaction with the development of the columnar grain structure. Consequently, critical benchmark data to test fundamental theories of grain structure formation are required, that would benefit from microgravity investigations. Accordingly, the ESA-MAP CETSOL project has gathered together European groups with complementary skills to carry out experiments and to model the processes, in particular with a view to utilization of the reduced-gravity environment that will be afforded by the International Space Station (ISS) to get benchmark data. The ultimate objective of the research program is to significantly contribute to the improvement of integrated modelling of grain structure in industrially important castings. To reach this goal, the approach is devised to deepen the quantitative understanding of the basic physical principles that, from the microscopic to the macroscopic scales, govern microstructure formation in solidification processing under diffusive conditions and with fluid flow in the melt. Pertinent questions are attacked by well-defined model experiments on technical alloys and/or on model transparent systems, physical modelling at microstructure and mesoscopic scales (e.g. large columnar front or equiaxed crystals) and numerical simulation at all scales, up to the macroscopic scales of casting with integrated numerical models.

Original languageEnglish
Title of host publicationSolidification and Gravity IV - Proceedings of the 4th International Conference on Solidification and Gravity
PublisherTrans Tech Publications Ltd
Pages393-404
Number of pages12
ISBN (Print)0878499911, 9780878499915
Publication statusPublished (in print/issue) - 1 Jan 2006
Event4th International Conference on Solidification and Gravity - Miskolc-Lillafuered, Hungary
Duration: 6 Sept 20049 Sept 2004

Publication series

NameMaterials Science Forum
Volume508
ISSN (Print)0255-5476

Conference

Conference4th International Conference on Solidification and Gravity
Country/TerritoryHungary
CityMiskolc-Lillafuered
Period6/09/049/09/04

Keywords

  • Casting
  • Columnar-to-equiaxed transition
  • Grain structure
  • Macrosegregation
  • Metallic alloys
  • Microgravity
  • Solidification

Fingerprint

Dive into the research topics of 'Columnar-to-Equiaxed Transition in SOLidification Processing (CETSOL): A project of the European Space Agency (ESA) - Microgravity Applications Promotion (MAP) programme'. Together they form a unique fingerprint.

Cite this