Columnar and Equiaxed Solidification of Al-7 wt.% Si Alloys in Reduced Gravity in the Framework of the CETSOL Project

G. Zimmermann, L. Sturz, H. Nguyen-Thi, N. Mangelinck-Noel, Y. Z. Li, C.-A. Gandin, R. Fleurisson, G. Guillemot, S. McFadden, R. P. Mooney, P. Voorhees, A. Roosz, A. Ronaföldi, C. Beckermann, A. Karma, C.-H. Chen, N. Warnken, A. Saad, G.-U. Grün, M. Grohn & 6 others I. Poitrault, T. Pehl, I. Nagy, D. Todt, O. Minster, W. Sillekens

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

During casting, often a dendritic microstructure is formed, resulting in a columnar or an equiaxed grain structure, or leading to a transition from columnar to equiaxed growth (CET). The detailed knowledge of the critical parameters for the CET is important because the microstructure affects materials properties. To provide unique data for testing of fundamental theories of grain and microstructure formation, solidification experiments in microgravity environment were performed within the European Space Agency Microgravity Application Promotion (ESA MAP) project Columnar-to-Equiaxed Transition in SOLidification Processing (CETSOL). Reduced gravity allows for purely diffusive solidification conditions, i.e., suppressing melt flow and sedimentation and floatation effects. On-board the International Space Station, Al-7 wt.% Si alloys with and without grain refiners were solidified in different temperature gradients and with different cooling conditions. Detailed analysis of the microstructure and the grain structure showed purely columnar growth for nonrefined alloys. The CET was detected only for refined alloys, either as a sharp CET in the case of a sudden increase in the solidification velocity or as a progressive CET in the case of a continuous decrease of the temperature gradient. The present experimental data were used for numerical modeling of the CET with three different approaches: (1) a front tracking model using an equiaxed growth model, (2) a three-dimensional (3D) cellular automaton–finite element model, and (3) a 3D dendrite needle network method. Each model allows for predicting the columnar dendrite tip undercooling and the growth rate with respect to time. Furthermore, the positions of CET and the spatial extent of the CET, being sharp or progressive, are in reasonably good quantitative agreement with experimental measurements.
LanguageEnglish
Pages1269-1279
JournalJOM Journal of the Minerals, Metals and Materials Society
Volume69
Issue number8
Early online date1 Jun 2017
DOIs
Publication statusE-pub ahead of print - 1 Jun 2017

Fingerprint

Solidification
Gravitation
Microstructure
Crystal microstructure
Microgravity
Processing
Thermal gradients
Undercooling
Cellular automata
Space stations
Sedimentation
Needles
Materials properties
Casting
Cooling
Testing
Experiments

Keywords

  • Solidification
  • Alloy
  • microgravity

Cite this

Zimmermann, G. ; Sturz, L. ; Nguyen-Thi, H. ; Mangelinck-Noel, N. ; Li, Y. Z. ; Gandin, C.-A. ; Fleurisson, R. ; Guillemot, G. ; McFadden, S. ; Mooney, R. P. ; Voorhees, P. ; Roosz, A. ; Ronaföldi, A. ; Beckermann, C. ; Karma, A. ; Chen, C.-H. ; Warnken, N. ; Saad, A. ; Grün, G.-U. ; Grohn, M. ; Poitrault, I. ; Pehl, T. ; Nagy, I. ; Todt, D. ; Minster, O. ; Sillekens, W. / Columnar and Equiaxed Solidification of Al-7 wt.% Si Alloys in Reduced Gravity in the Framework of the CETSOL Project. In: JOM Journal of the Minerals, Metals and Materials Society. 2017 ; Vol. 69, No. 8. pp. 1269-1279.
@article{82c4e73384ce470598a074502f6e5c4e,
title = "Columnar and Equiaxed Solidification of Al-7 wt.{\%} Si Alloys in Reduced Gravity in the Framework of the CETSOL Project",
abstract = "During casting, often a dendritic microstructure is formed, resulting in a columnar or an equiaxed grain structure, or leading to a transition from columnar to equiaxed growth (CET). The detailed knowledge of the critical parameters for the CET is important because the microstructure affects materials properties. To provide unique data for testing of fundamental theories of grain and microstructure formation, solidification experiments in microgravity environment were performed within the European Space Agency Microgravity Application Promotion (ESA MAP) project Columnar-to-Equiaxed Transition in SOLidification Processing (CETSOL). Reduced gravity allows for purely diffusive solidification conditions, i.e., suppressing melt flow and sedimentation and floatation effects. On-board the International Space Station, Al-7 wt.{\%} Si alloys with and without grain refiners were solidified in different temperature gradients and with different cooling conditions. Detailed analysis of the microstructure and the grain structure showed purely columnar growth for nonrefined alloys. The CET was detected only for refined alloys, either as a sharp CET in the case of a sudden increase in the solidification velocity or as a progressive CET in the case of a continuous decrease of the temperature gradient. The present experimental data were used for numerical modeling of the CET with three different approaches: (1) a front tracking model using an equiaxed growth model, (2) a three-dimensional (3D) cellular automaton–finite element model, and (3) a 3D dendrite needle network method. Each model allows for predicting the columnar dendrite tip undercooling and the growth rate with respect to time. Furthermore, the positions of CET and the spatial extent of the CET, being sharp or progressive, are in reasonably good quantitative agreement with experimental measurements.",
keywords = "Solidification, Alloy, microgravity",
author = "G. Zimmermann and L. Sturz and H. Nguyen-Thi and N. Mangelinck-Noel and Li, {Y. Z.} and C.-A. Gandin and R. Fleurisson and G. Guillemot and S. McFadden and Mooney, {R. P.} and P. Voorhees and A. Roosz and A. Ronaf{\"o}ldi and C. Beckermann and A. Karma and C.-H. Chen and N. Warnken and A. Saad and G.-U. Gr{\"u}n and M. Grohn and I. Poitrault and T. Pehl and I. Nagy and D. Todt and O. Minster and W. Sillekens",
note = "Reference text: 1. G. Zimmermann, L. Sturz, B. Billia, N. Mangelinck-Noe¨ l, H. Nguyen Thi, C.-A. Gandin, D.J. Browne, and W.U. Mirihanage, JOP Conference Series 327 (2011). 2. G. Zimmermann, L. Sturz, B. Billia, N. Mangelinck-Noe¨ l, D.R. Liu, H. Nguyen Thi, N. Bergeon, C.-A .Gandin, D.J. Browne, Ch Beckermann, D. Tourret, and A. Karma, Mater. Sci. Forum 790, 12 (2014). 3. D.R. Liu, N. Mangelinck-Noe¨l, C.A. Gandin, G. Zimmermann, L. Sturz, H. Nguyen Thi, and B. Billia, Acta Mater. 64, 253 (2014). 4. W.U. Mirihanage, D.J. Browne, G. Zimmermann, and L. Sturz, Acta Mater. 60, 6362 (2012). 5. Y.Z. Li, N. Mangelinck-Noe¨ l, H. Nguyen-Thi, G. Zimmermann, L. Sturz, T. Cool, E.B. Gulsoy, and P.W. Voorhees, in Proceedings of the 6th Decennial International Conference on Solidification SP17, in press (2017). 6. C.A. Gandin, Acta Mater. 48, 2483 (2000). 7. J.D. Hunt, Mater. Sci. Eng. 65, 75 (1984). 8. D.J. Browne and J.D. Hunt, Numer. Heat Trans. B 45, 395 (2004). 9. W.U. Mirihanage and D.J. Browne, Comput. Mater. Sci. 46, 777 (2009). 10. W.U. Mirihanage, D.J. Browne, L. Sturz, and G. Zimmermann, IOP Conf. Ser. Mater. Sci. Eng. 27 (2011). 11. R.P. Mooney, S. McFadden, M. Rebow, and D.J. Browne, Trans. Indian Inst. Met. 65, 527 (2012). 12. R.P. Mooney, S. McFadden, Z. Gabalcova´ , and J. Lapin, Appl. Therm. Eng. 67, 61 (2014). 13. W.A. Johnson and R.F. Mehl, Trans. Aime 135, 396 (1939). 14. M. Avrami, J. Chem. Phys. 9, 177 (1941). 15. A.N. Kolmogorov, Bull. Acad. Sci. URSS (Sci. Math. Nat.) 3, 355 (1937). 16. T. Carozzani, H. Digonnet, and C.-A. Gandin, Model. Simul. Mater. Sci. Eng. 20, 015010 (2012). 17. T. Carozzani, Ch.-A. Gandin, H. Digonnet, M. Bellet, K. Zaidat, and Y. Fautrelle, Metall. Mater. Trans. A 44, 873 (2013). 18. T. Carozzani, Ch.-A. Gandin, and H. Digonnet, Model. Simul. Mater. Sci. Eng. 22, 015012 (2014). 19. Ch.-A. Gandin, T. Carozzani, H. Digonnet, S. Chen, and G. Guillemot, JOM 65, 1122 (2013). 20. D.R. Liu, N. Mangelinck-Noe¨ l, Ch.-A. Gandin, G. Zimmermann, L. Sturz, H. Nguyen-Thi, and B. Billia, Acta Mater. 93, 24 (2015). 21. D.R. Liu, N. Mangelinck-Noe¨ l, Ch.-A. Gandin, G. Zimmermann, L. Sturz, H. Nguyen-Thi, B. Billia, and I.O.P. Series, Mater. Sci. Eng. 117, 012009 (2016). 22. D. Tourret, A. Karma, A.J. Clarke, P.J. Gibbs, and S.D. Imhoff, IOP Conf. Ser. Mater. Sci. Eng. 84, 012082 (2015). 23. D. Tourret and A. Karma, Acta Mater. 120, 240 (2016). 24. D. Tourret, A.J. Clarke, S.D. Imhoff, P.J. Gibbs, J.W. Gibbs, and A. Karma, JOM 67, 1776 (2015). 25. J.L. Fife and P.W. Voorhees, Acta Mater. 57, 2418 (2009). 26. J. Alkemper and P.W. Voorhees, Acta Mater. 49, 897 (2001). 27. L. Sturz, M. Hamacher, and G. Zimmermann, in Proceedings of the 6th Decennial International Conference on Solidification SP17, in press (2017). 28. A. Ludwig, J. Mogerisch, M. Kolbe, G. Zimmermann, L. Sturz, N. Bergeon, B. Billia, G. Faivre, S. Akamatsu, S. Bottin-Rousseau, and D. Voss, JOM 64, 1097 (2012).",
year = "2017",
month = "6",
day = "1",
doi = "10.1007/s11837-017-2397-4",
language = "English",
volume = "69",
pages = "1269--1279",
journal = "JOM Journal of the Minerals, Metals and Materials Society",
issn = "1047-4838",
number = "8",

}

Zimmermann, G, Sturz, L, Nguyen-Thi, H, Mangelinck-Noel, N, Li, YZ, Gandin, C-A, Fleurisson, R, Guillemot, G, McFadden, S, Mooney, RP, Voorhees, P, Roosz, A, Ronaföldi, A, Beckermann, C, Karma, A, Chen, C-H, Warnken, N, Saad, A, Grün, G-U, Grohn, M, Poitrault, I, Pehl, T, Nagy, I, Todt, D, Minster, O & Sillekens, W 2017, 'Columnar and Equiaxed Solidification of Al-7 wt.% Si Alloys in Reduced Gravity in the Framework of the CETSOL Project', JOM Journal of the Minerals, Metals and Materials Society, vol. 69, no. 8, pp. 1269-1279. https://doi.org/10.1007/s11837-017-2397-4

Columnar and Equiaxed Solidification of Al-7 wt.% Si Alloys in Reduced Gravity in the Framework of the CETSOL Project. / Zimmermann, G.; Sturz, L.; Nguyen-Thi, H.; Mangelinck-Noel, N.; Li, Y. Z.; Gandin, C.-A.; Fleurisson, R.; Guillemot, G.; McFadden, S.; Mooney, R. P.; Voorhees, P.; Roosz, A.; Ronaföldi, A.; Beckermann, C.; Karma, A.; Chen, C.-H.; Warnken, N.; Saad, A.; Grün, G.-U.; Grohn, M.; Poitrault, I.; Pehl, T.; Nagy, I.; Todt, D.; Minster, O.; Sillekens, W.

In: JOM Journal of the Minerals, Metals and Materials Society, Vol. 69, No. 8, 01.06.2017, p. 1269-1279.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Columnar and Equiaxed Solidification of Al-7 wt.% Si Alloys in Reduced Gravity in the Framework of the CETSOL Project

AU - Zimmermann, G.

AU - Sturz, L.

AU - Nguyen-Thi, H.

AU - Mangelinck-Noel, N.

AU - Li, Y. Z.

AU - Gandin, C.-A.

AU - Fleurisson, R.

AU - Guillemot, G.

AU - McFadden, S.

AU - Mooney, R. P.

AU - Voorhees, P.

AU - Roosz, A.

AU - Ronaföldi, A.

AU - Beckermann, C.

AU - Karma, A.

AU - Chen, C.-H.

AU - Warnken, N.

AU - Saad, A.

AU - Grün, G.-U.

AU - Grohn, M.

AU - Poitrault, I.

AU - Pehl, T.

AU - Nagy, I.

AU - Todt, D.

AU - Minster, O.

AU - Sillekens, W.

N1 - Reference text: 1. G. Zimmermann, L. Sturz, B. Billia, N. Mangelinck-Noe¨ l, H. Nguyen Thi, C.-A. Gandin, D.J. Browne, and W.U. Mirihanage, JOP Conference Series 327 (2011). 2. G. Zimmermann, L. Sturz, B. Billia, N. Mangelinck-Noe¨ l, D.R. Liu, H. Nguyen Thi, N. Bergeon, C.-A .Gandin, D.J. Browne, Ch Beckermann, D. Tourret, and A. Karma, Mater. Sci. Forum 790, 12 (2014). 3. D.R. Liu, N. Mangelinck-Noe¨l, C.A. Gandin, G. Zimmermann, L. Sturz, H. Nguyen Thi, and B. Billia, Acta Mater. 64, 253 (2014). 4. W.U. Mirihanage, D.J. Browne, G. Zimmermann, and L. Sturz, Acta Mater. 60, 6362 (2012). 5. Y.Z. Li, N. Mangelinck-Noe¨ l, H. Nguyen-Thi, G. Zimmermann, L. Sturz, T. Cool, E.B. Gulsoy, and P.W. Voorhees, in Proceedings of the 6th Decennial International Conference on Solidification SP17, in press (2017). 6. C.A. Gandin, Acta Mater. 48, 2483 (2000). 7. J.D. Hunt, Mater. Sci. Eng. 65, 75 (1984). 8. D.J. Browne and J.D. Hunt, Numer. Heat Trans. B 45, 395 (2004). 9. W.U. Mirihanage and D.J. Browne, Comput. Mater. Sci. 46, 777 (2009). 10. W.U. Mirihanage, D.J. Browne, L. Sturz, and G. Zimmermann, IOP Conf. Ser. Mater. Sci. Eng. 27 (2011). 11. R.P. Mooney, S. McFadden, M. Rebow, and D.J. Browne, Trans. Indian Inst. Met. 65, 527 (2012). 12. R.P. Mooney, S. McFadden, Z. Gabalcova´ , and J. Lapin, Appl. Therm. Eng. 67, 61 (2014). 13. W.A. Johnson and R.F. Mehl, Trans. Aime 135, 396 (1939). 14. M. Avrami, J. Chem. Phys. 9, 177 (1941). 15. A.N. Kolmogorov, Bull. Acad. Sci. URSS (Sci. Math. Nat.) 3, 355 (1937). 16. T. Carozzani, H. Digonnet, and C.-A. Gandin, Model. Simul. Mater. Sci. Eng. 20, 015010 (2012). 17. T. Carozzani, Ch.-A. Gandin, H. Digonnet, M. Bellet, K. Zaidat, and Y. Fautrelle, Metall. Mater. Trans. A 44, 873 (2013). 18. T. Carozzani, Ch.-A. Gandin, and H. Digonnet, Model. Simul. Mater. Sci. Eng. 22, 015012 (2014). 19. Ch.-A. Gandin, T. Carozzani, H. Digonnet, S. Chen, and G. Guillemot, JOM 65, 1122 (2013). 20. D.R. Liu, N. Mangelinck-Noe¨ l, Ch.-A. Gandin, G. Zimmermann, L. Sturz, H. Nguyen-Thi, and B. Billia, Acta Mater. 93, 24 (2015). 21. D.R. Liu, N. Mangelinck-Noe¨ l, Ch.-A. Gandin, G. Zimmermann, L. Sturz, H. Nguyen-Thi, B. Billia, and I.O.P. Series, Mater. Sci. Eng. 117, 012009 (2016). 22. D. Tourret, A. Karma, A.J. Clarke, P.J. Gibbs, and S.D. Imhoff, IOP Conf. Ser. Mater. Sci. Eng. 84, 012082 (2015). 23. D. Tourret and A. Karma, Acta Mater. 120, 240 (2016). 24. D. Tourret, A.J. Clarke, S.D. Imhoff, P.J. Gibbs, J.W. Gibbs, and A. Karma, JOM 67, 1776 (2015). 25. J.L. Fife and P.W. Voorhees, Acta Mater. 57, 2418 (2009). 26. J. Alkemper and P.W. Voorhees, Acta Mater. 49, 897 (2001). 27. L. Sturz, M. Hamacher, and G. Zimmermann, in Proceedings of the 6th Decennial International Conference on Solidification SP17, in press (2017). 28. A. Ludwig, J. Mogerisch, M. Kolbe, G. Zimmermann, L. Sturz, N. Bergeon, B. Billia, G. Faivre, S. Akamatsu, S. Bottin-Rousseau, and D. Voss, JOM 64, 1097 (2012).

PY - 2017/6/1

Y1 - 2017/6/1

N2 - During casting, often a dendritic microstructure is formed, resulting in a columnar or an equiaxed grain structure, or leading to a transition from columnar to equiaxed growth (CET). The detailed knowledge of the critical parameters for the CET is important because the microstructure affects materials properties. To provide unique data for testing of fundamental theories of grain and microstructure formation, solidification experiments in microgravity environment were performed within the European Space Agency Microgravity Application Promotion (ESA MAP) project Columnar-to-Equiaxed Transition in SOLidification Processing (CETSOL). Reduced gravity allows for purely diffusive solidification conditions, i.e., suppressing melt flow and sedimentation and floatation effects. On-board the International Space Station, Al-7 wt.% Si alloys with and without grain refiners were solidified in different temperature gradients and with different cooling conditions. Detailed analysis of the microstructure and the grain structure showed purely columnar growth for nonrefined alloys. The CET was detected only for refined alloys, either as a sharp CET in the case of a sudden increase in the solidification velocity or as a progressive CET in the case of a continuous decrease of the temperature gradient. The present experimental data were used for numerical modeling of the CET with three different approaches: (1) a front tracking model using an equiaxed growth model, (2) a three-dimensional (3D) cellular automaton–finite element model, and (3) a 3D dendrite needle network method. Each model allows for predicting the columnar dendrite tip undercooling and the growth rate with respect to time. Furthermore, the positions of CET and the spatial extent of the CET, being sharp or progressive, are in reasonably good quantitative agreement with experimental measurements.

AB - During casting, often a dendritic microstructure is formed, resulting in a columnar or an equiaxed grain structure, or leading to a transition from columnar to equiaxed growth (CET). The detailed knowledge of the critical parameters for the CET is important because the microstructure affects materials properties. To provide unique data for testing of fundamental theories of grain and microstructure formation, solidification experiments in microgravity environment were performed within the European Space Agency Microgravity Application Promotion (ESA MAP) project Columnar-to-Equiaxed Transition in SOLidification Processing (CETSOL). Reduced gravity allows for purely diffusive solidification conditions, i.e., suppressing melt flow and sedimentation and floatation effects. On-board the International Space Station, Al-7 wt.% Si alloys with and without grain refiners were solidified in different temperature gradients and with different cooling conditions. Detailed analysis of the microstructure and the grain structure showed purely columnar growth for nonrefined alloys. The CET was detected only for refined alloys, either as a sharp CET in the case of a sudden increase in the solidification velocity or as a progressive CET in the case of a continuous decrease of the temperature gradient. The present experimental data were used for numerical modeling of the CET with three different approaches: (1) a front tracking model using an equiaxed growth model, (2) a three-dimensional (3D) cellular automaton–finite element model, and (3) a 3D dendrite needle network method. Each model allows for predicting the columnar dendrite tip undercooling and the growth rate with respect to time. Furthermore, the positions of CET and the spatial extent of the CET, being sharp or progressive, are in reasonably good quantitative agreement with experimental measurements.

KW - Solidification

KW - Alloy

KW - microgravity

U2 - 10.1007/s11837-017-2397-4

DO - 10.1007/s11837-017-2397-4

M3 - Article

VL - 69

SP - 1269

EP - 1279

JO - JOM Journal of the Minerals, Metals and Materials Society

T2 - JOM Journal of the Minerals, Metals and Materials Society

JF - JOM Journal of the Minerals, Metals and Materials Society

SN - 1047-4838

IS - 8

ER -