Characteristics of BRIN-BG5 and BRIN-BG7, two novel glucose-responsive insulin-secreting cell lines produced by electrofusion

Neville McClenaghan, CR Barnett, Finbarr O'Harte, SK SwanstonFlatt, E AhSing, Peter Flatt

Research output: Contribution to journalArticle

10 Citations (Scopus)

Abstract

Two hybrid insulin-secreting cell lines (BRIN-BG5 and BRIN-BG7) were established by the novel approach of electrofusing RINm5F cells with New England Deaconess Hospital rat pancreatic islet cells. Cells were selected from the fusion mixture on the basis of insulin output. Wells showing five to ten times greater insulin output than parental RINm5F cells were selected, subcultured and cloned. Clonal BRIN-BG5 and BRIN-G7 cells grow as monolayers with epithelial morphology. The differences in doubling time of 28 and 20 h respectively were associated with morphological differences; the growth pattern and insulin content of each cell line remaining stable for over 50 passages. In acute 20-min tests, both cell lines showed peak secretory responses (1.9- and 1.8-fold respectively) to 8.4 mmol/l glucose. Membrane depolarization with 25 mmol/l K+ evoked 3.7- and 3.9-fold increases in insulin output. L-Alanine (10 mmol/l) also served to promote 2.4- and 1.6-fold increases in insulin release respectively. Increasing the Ca2+ concentration from 1.28 to 7.68 mmol/l potentiated this effect by 1.8- and 1.5-fold. Incubation with forskolin (25 mu mol/l) or phorbol-12-myristate 13-acetate (10 nmol/l), in the presence of L-alanine, similarly enhanced the secretory effect on BRIN-BG5 and BRIN-BG7 cells by 1.3- to 2.1-fold and 1.2- to 1.5-fold respectively. The presence of a functional glucose-sensing mechanism in both cell lines was confirmed by the demonstration of the glucose transporter GLUT-2 and measurement of glucokinase activity. These functional properties suggest that insulin-secreting BRIN-BG5 and BRIN-BG7 cells represent two useful glucose-responsive cell lines for future studies of the function of the pancreatic B-cell.
LanguageEnglish
Pages409-417
JournalJournal of Endrocrinology
Volume148
Issue number3
Publication statusPublished - Mar 1996

Fingerprint

Insulin-Secreting Cells
Insulin
Glucose
Cell Line
Islets of Langerhans
Alanine
Glucokinase
New England
Facilitative Glucose Transport Proteins
Hybrid Cells
Colforsin
Acetates
Membranes
Growth

Cite this

@article{2f3cf1ac43e648eba1a86bc5763ad8d8,
title = "Characteristics of BRIN-BG5 and BRIN-BG7, two novel glucose-responsive insulin-secreting cell lines produced by electrofusion",
abstract = "Two hybrid insulin-secreting cell lines (BRIN-BG5 and BRIN-BG7) were established by the novel approach of electrofusing RINm5F cells with New England Deaconess Hospital rat pancreatic islet cells. Cells were selected from the fusion mixture on the basis of insulin output. Wells showing five to ten times greater insulin output than parental RINm5F cells were selected, subcultured and cloned. Clonal BRIN-BG5 and BRIN-G7 cells grow as monolayers with epithelial morphology. The differences in doubling time of 28 and 20 h respectively were associated with morphological differences; the growth pattern and insulin content of each cell line remaining stable for over 50 passages. In acute 20-min tests, both cell lines showed peak secretory responses (1.9- and 1.8-fold respectively) to 8.4 mmol/l glucose. Membrane depolarization with 25 mmol/l K+ evoked 3.7- and 3.9-fold increases in insulin output. L-Alanine (10 mmol/l) also served to promote 2.4- and 1.6-fold increases in insulin release respectively. Increasing the Ca2+ concentration from 1.28 to 7.68 mmol/l potentiated this effect by 1.8- and 1.5-fold. Incubation with forskolin (25 mu mol/l) or phorbol-12-myristate 13-acetate (10 nmol/l), in the presence of L-alanine, similarly enhanced the secretory effect on BRIN-BG5 and BRIN-BG7 cells by 1.3- to 2.1-fold and 1.2- to 1.5-fold respectively. The presence of a functional glucose-sensing mechanism in both cell lines was confirmed by the demonstration of the glucose transporter GLUT-2 and measurement of glucokinase activity. These functional properties suggest that insulin-secreting BRIN-BG5 and BRIN-BG7 cells represent two useful glucose-responsive cell lines for future studies of the function of the pancreatic B-cell.",
author = "Neville McClenaghan and CR Barnett and Finbarr O'Harte and SK SwanstonFlatt and E AhSing and Peter Flatt",
year = "1996",
month = "3",
language = "English",
volume = "148",
pages = "409--417",
journal = "Journal of Endrocrinology",
issn = "0022-0795",
number = "3",

}

Characteristics of BRIN-BG5 and BRIN-BG7, two novel glucose-responsive insulin-secreting cell lines produced by electrofusion. / McClenaghan, Neville; Barnett, CR; O'Harte, Finbarr; SwanstonFlatt, SK; AhSing, E; Flatt, Peter.

In: Journal of Endrocrinology, Vol. 148, No. 3, 03.1996, p. 409-417.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Characteristics of BRIN-BG5 and BRIN-BG7, two novel glucose-responsive insulin-secreting cell lines produced by electrofusion

AU - McClenaghan, Neville

AU - Barnett, CR

AU - O'Harte, Finbarr

AU - SwanstonFlatt, SK

AU - AhSing, E

AU - Flatt, Peter

PY - 1996/3

Y1 - 1996/3

N2 - Two hybrid insulin-secreting cell lines (BRIN-BG5 and BRIN-BG7) were established by the novel approach of electrofusing RINm5F cells with New England Deaconess Hospital rat pancreatic islet cells. Cells were selected from the fusion mixture on the basis of insulin output. Wells showing five to ten times greater insulin output than parental RINm5F cells were selected, subcultured and cloned. Clonal BRIN-BG5 and BRIN-G7 cells grow as monolayers with epithelial morphology. The differences in doubling time of 28 and 20 h respectively were associated with morphological differences; the growth pattern and insulin content of each cell line remaining stable for over 50 passages. In acute 20-min tests, both cell lines showed peak secretory responses (1.9- and 1.8-fold respectively) to 8.4 mmol/l glucose. Membrane depolarization with 25 mmol/l K+ evoked 3.7- and 3.9-fold increases in insulin output. L-Alanine (10 mmol/l) also served to promote 2.4- and 1.6-fold increases in insulin release respectively. Increasing the Ca2+ concentration from 1.28 to 7.68 mmol/l potentiated this effect by 1.8- and 1.5-fold. Incubation with forskolin (25 mu mol/l) or phorbol-12-myristate 13-acetate (10 nmol/l), in the presence of L-alanine, similarly enhanced the secretory effect on BRIN-BG5 and BRIN-BG7 cells by 1.3- to 2.1-fold and 1.2- to 1.5-fold respectively. The presence of a functional glucose-sensing mechanism in both cell lines was confirmed by the demonstration of the glucose transporter GLUT-2 and measurement of glucokinase activity. These functional properties suggest that insulin-secreting BRIN-BG5 and BRIN-BG7 cells represent two useful glucose-responsive cell lines for future studies of the function of the pancreatic B-cell.

AB - Two hybrid insulin-secreting cell lines (BRIN-BG5 and BRIN-BG7) were established by the novel approach of electrofusing RINm5F cells with New England Deaconess Hospital rat pancreatic islet cells. Cells were selected from the fusion mixture on the basis of insulin output. Wells showing five to ten times greater insulin output than parental RINm5F cells were selected, subcultured and cloned. Clonal BRIN-BG5 and BRIN-G7 cells grow as monolayers with epithelial morphology. The differences in doubling time of 28 and 20 h respectively were associated with morphological differences; the growth pattern and insulin content of each cell line remaining stable for over 50 passages. In acute 20-min tests, both cell lines showed peak secretory responses (1.9- and 1.8-fold respectively) to 8.4 mmol/l glucose. Membrane depolarization with 25 mmol/l K+ evoked 3.7- and 3.9-fold increases in insulin output. L-Alanine (10 mmol/l) also served to promote 2.4- and 1.6-fold increases in insulin release respectively. Increasing the Ca2+ concentration from 1.28 to 7.68 mmol/l potentiated this effect by 1.8- and 1.5-fold. Incubation with forskolin (25 mu mol/l) or phorbol-12-myristate 13-acetate (10 nmol/l), in the presence of L-alanine, similarly enhanced the secretory effect on BRIN-BG5 and BRIN-BG7 cells by 1.3- to 2.1-fold and 1.2- to 1.5-fold respectively. The presence of a functional glucose-sensing mechanism in both cell lines was confirmed by the demonstration of the glucose transporter GLUT-2 and measurement of glucokinase activity. These functional properties suggest that insulin-secreting BRIN-BG5 and BRIN-BG7 cells represent two useful glucose-responsive cell lines for future studies of the function of the pancreatic B-cell.

M3 - Article

VL - 148

SP - 409

EP - 417

JO - Journal of Endrocrinology

T2 - Journal of Endrocrinology

JF - Journal of Endrocrinology

SN - 0022-0795

IS - 3

ER -