Challenges and opportunities for the future of Brain-Computer Interface in neurorehabilitation

Colin Simon, David Bolton, Niamh Kennedy, Surjo Soekadar, Kathy Ruddy

Research output: Contribution to journalReview articlepeer-review

29 Citations (Scopus)
196 Downloads (Pure)

Abstract

Brain-computer interfaces (BCIs) provide a unique technological solution to circumvent the damaged motor system. For neurorehabilitation, the BCI can be used to translate neural signals associated with movement intentions into tangible feedback for the patient, when they are unable to generate functional movement themselves. Clinical interest in BCI is growing rapidly, as it would facilitate rehabilitation to commence earlier following brain damage and provides options for patients who are unable to partake in traditional physical therapy. However, substantial challenges with existing BCI implementations have prevented its widespread adoption. Recent advances in knowledge and technology provide opportunities to facilitate a change, provided that researchers and clinicians using BCI agree on standardisation of guidelines for protocols and shared efforts to uncover mechanisms. We propose that addressing the speed and effectiveness of learning BCI control are priorities for the field, which may be improved by multimodal or multi-stage approaches harnessing more sensitive neuroimaging technologies in the early learning stages, before transitioning to more practical, mobile implementations. Clarification of the neural mechanisms that give rise to improvement in motor function is an essential next step towards justifying clinical use of BCI. In particular, quantifying the unknown contribution of non-motor mechanisms to motor recovery calls for more stringent control conditions in experimental work. Here we provide a contemporary viewpoint on the factors impeding the scalability of BCI. Further, we provide a future outlook for optimal design of the technology to best exploit its unique potential, and best practices for research and reporting of findings.

Original languageEnglish
Article number699428
Pages (from-to)1-8
Number of pages8
JournalFrontiers in Neuroscience
Volume15
Early online date2 Jul 2021
DOIs
Publication statusPublished online - 2 Jul 2021

Bibliographical note

Funding Information:
KR and CS were supported by a grant from the Health Research Board of Ireland (HRB-EIA-2019-003). KR would also like to acknowledge grant funding relating to this work from Enterprise Ireland (SI20203045) and (CS20202099).

Publisher Copyright:
© Copyright © 2021 Simon, Bolton, Kennedy, Soekadar and Ruddy.

Copyright © 2021 Simon, Bolton, Kennedy, Soekadar and Ruddy.

Keywords

  • Brain computer interface
  • Neurofeedback
  • Stroke
  • Neurorehabilitation
  • Transcranial Magnetic Stimulation
  • brain-computer interface
  • transcranial magnetic stimulation
  • stroke
  • neurorehabilitation
  • neurofeedback

Fingerprint

Dive into the research topics of 'Challenges and opportunities for the future of Brain-Computer Interface in neurorehabilitation'. Together they form a unique fingerprint.

Cite this