Bridging energy bands to the crystalline and amorphous states of Si QDs

Davide Mariotti, Bruno Alessi, Maddi Chiranjeevi, Manuel Macias-Montero, Vladimir Svrcek, Paul Maguire

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)
98 Downloads (Pure)


The relationship between the crystallization process and opto-electronic properties of silicon quantum dots (Si QDs) synthesized by atmospheric pressure plasmas (APPs) is studied in this work. The synthesis of Si QDs is carried out by flowing silane as a gas precursor in a plasma confined to a submillimeter space. Experimental conditions are adjusted to propitiate the crystallization of the Si QDs and produce QDs with both amorphous and crystalline character. In all cases, the Si QDs present a well-defined mean particle size in the range of 1.5-5.5 nm. Si QDs present optical bandgaps between 2.3 eV and 2.5 eV, which are affected by quantum confinement. Plasma parameters evaluated using optical emission spectroscopy are then used as inputs for a collisional plasma model, whose calculations yield the surface temperature of the Si QDs within the plasma, justifying the crystallization behavior under certain experimental conditions. We measure the ultraviolet-visible optical properties and electronic properties through various techniques, build an energy level diagram for the valence electrons region as a function of the crystallinity of the QDs, and finally discuss the integration of these as active layers of all-inorganic solar cells.

Original languageEnglish
Pages (from-to)390-404
Number of pages15
JournalFaraday Discussions
Early online date13 Jan 2020
Publication statusPublished (in print/issue) - 19 Jun 2020

Bibliographical note

Funding Information:
This work was supported by the EPSRC (EP/K022237/1, EP/M024938/1, EP/ R008841/1) and the Leverhulme International Network (IN-2012-136).

Publisher Copyright:
© The Royal Society of Chemistry.

Copyright 2020 Elsevier B.V., All rights reserved.


Dive into the research topics of 'Bridging energy bands to the crystalline and amorphous states of Si QDs'. Together they form a unique fingerprint.

Cite this