Brain-Inspired Spiking Neural Networks for Decoding and Understanding Muscle Activity and Kinematics from Electroencephalography Signals During Hand Movements

Kaushalya Kumarasinghe, Nikola Kasabov, Denise Taylor

Research output: Contribution to journalArticlepeer-review

44 Citations (Scopus)
175 Downloads (Pure)

Abstract

Compared to the abilities of the animal brain, many Artificial Intelligence systems have limitations which emphasise the need for a Brain-Inspired Artificial Intelligence paradigm. This paper proposes a novel Brain-Inspired Spiking Neural Network (BI-SNN) model for incremental learning of spike sequences. BI-SNN maps spiking activity from input channels into a high dimensional source-space which enhances the evolution of polychronising spiking neural populations. We applied the BI-SNN to predict muscle activity and kinematics from electroencephalography signals during upper limb functional movements. The BI-SNN extends our previously proposed eSPANNet computational model by integrating it with the ‘NeuCube’ brain-inspired SNN architecture. We show that BI-SNN can successfully predict continuous muscle activity and kinematics of upper-limb. The experimental results confirmed that the BI-SNN resulted in strongly correlated population activity and demonstrated the feasibility for real-time prediction. In contrast to the majority of Brain-Computer Interfaces (BCIs) that constitute a ‘black box’, BI-SNN provide quantitative and visual feedback about the related brain activity. This study is one of the first attempts to
examine the feasibility of finding neural correlates of muscle activity and kinematics from electroencephalography using a brain-inspired computational paradigm. The findings suggest that BI-SNN is a better neural decoder for non-invasive BCI.
Original languageEnglish
Article number2486
Pages (from-to)1-19
Number of pages19
JournalScientific Reports
Volume11
Issue number1
Early online date28 Jan 2021
DOIs
Publication statusPublished online - 28 Jan 2021

Bibliographical note

Funding Information:
This research was supported by the SRIF Interact 2017-2019 Grant from the Auckland University of Technology.

Publisher Copyright:
© 2021, The Author(s).

Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.

Keywords

  • Spiking neural networks
  • SPAN
  • neurorehabilitaion
  • hand movements
  • Brain Waves/physiology
  • Humans
  • Brain/physiology
  • Male
  • Hand
  • Female
  • Muscle, Skeletal/physiology
  • Movement/physiology
  • Nerve Net/physiology

Fingerprint

Dive into the research topics of 'Brain-Inspired Spiking Neural Networks for Decoding and Understanding Muscle Activity and Kinematics from Electroencephalography Signals During Hand Movements'. Together they form a unique fingerprint.

Cite this